The boss fire today, or continue to transcription it, to appease my wounded little heart. Knowledge still has to accumulate slowly, step by step, this perhaps is the quickest shortcut.
------2015-2-16------------------------------------------------------------------
- NumPy Ndarray: A multidimensional Array object
An important feature of NumPy is the n-dimensional array object (Ndarray), which is a fast and flexible large data set container. Ndarray is a generic homogeneous data multidimensional container, which means that all elements must be of the same type. Each array has a shape (a tuple that represents the size of each dimension) and Dtype (an object representing the array data type).
Import NumPy as npin[3]: data=[[1,2,3],[4,5,6]]in[4]: arr=np.array (data) in[6]: arrout[ 6]: Array ([[1, 2, 3], [4, 5, 6]]) in[7]: arr.shapeout[7]: (2L, 3L) in[ 8]: arr.dtypeout[8]: Dtype ('int32')
Create Ndarray
Array creation function
Function |
Description |
Array |
Converts the input data (list, tuple, array, or other sequence type) to Ndarray. Either infer the Dtype, or display the specified dtype. Default direct copy of input data |
Asarray |
Converts the input to Ndarray if the input itself is a ndarray and does not replicate |
Arange |
Returns a ndarray instead of a list |
Ones, Ones_like |
Creates a full 1 array based on the specified shape and dtype. Ones_like takes another array as an argument and creates a full 1 array based on its shape and dtype |
Zeros, Zeros_like |
Similar to ones and ones_likes only produce a full 0 array |
Empty, Empty_like |
Creates a new array, allocates only memory space but does not populate any values |
Eye, identity |
Create a NXN unit matrix |
Ndarray Data types
Int8,int16,int32,int64 signed integral type
Uint8,uint16,uint32,uint64 unsigned integral type
float16,float32,float64,float128 single precision, multi-precision, extended accuracy
The plural of complex64,complex128,complex256, respectively, with 32,64,128
bool
Object Python Data Objects
String_ fixed-length string data types
Unicode_ fixed-length Unicode types
In[23]: Arr.astype (np.float64) out[: Array ([1., 2., 3., 4., 5.]) in[]: h1=arr.astype (np.int16) in[[]: h1.dtypeout[[]: Dtype ('int16 ')
Operations between arrays and scalars
IN[2]:ImportNumPy as npin[3]: Arr=np.array ([[1,2,3],[4,5,6]]) in[4]: arr*arrout[4]: Array ([[1, 4, 9], [16, 25, 36]]) in[5]: arr+arrout[5]: Array ([[2, 4, 6], [ 8, 10, 12]]) in[6]: arr*4out[6]: Array ([[4, 8, 12], [16, 20, 24]]) in[7]: arr**0.5out[7]: Array ([[1., 1.41421356, 1.73205081], [ 2., 2.23606798, 2.44948974]])
Basic indexes and slices
IN[8]: Np.arange (ten) out[8]: Array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) in[9]: Arr=np.arange (ten) in[10] : Arr[5:8]out[]: Array ([5, 6, 7]) in[]: arr_slice=arr[5:8]in[]: arr_slice[1]out[ ]: 6in[]: arr_slice[1]=123456in[]:arrout[]: Array ([ 0, 1, 2, 3, 4, 5, 123456, 7, 8, 9])
Warning: Ndarray a copy of a slice rather than a view, you need to display arr[5:8].copy ()
Transpose of arrays and axes swapping
IN[16]: Arr=np.arange (0). Reshape ((3,5)) in[[]: arrout[]: Array ( [[[1], " 2", "["]] "." [[[]]]. 3, 4], 5, 6, 7, 8, 9], [Ten, one, one, and up]]) in[ ]: arr. tout[]: Array ([[0 ,5, ten], 1, 6, one), 2, 7, 12 ], 3, 8, [], 4, 9,]]) in[]: Np.dot (Arr,arr. T) out[ , 80, 255, 430],
- General functions: Fast element Progression Group functions
- Using Arrays for data processing
- File input and output for arrays
IN[20]: Samples=np.random.normal (size= (bis)) in[]: samplesout[1.2160082, 0.34629744, -0.70813727, 2.59673398], [-1.32110632, 1.19660352, 0.08227731, 0.24075048], [-0.29301216, 0.42639032, -1.76321448, -1.05558718], 0.0872803 , 0.25871173, 0.63373105, 0.59362002])
The Numpy.random module is faster than the python built-in random module.
Partial numpy.random function
NumPy Basics: Arrays and vector calculations