[Question link]
Http://acm.hdu.edu.cn/showproblem.php? PID = 1, 3715
[Topic]
There is a recursive code:
Go (int dep, int N, int m)
Begin
Output the value of dep.
If Dep <m and X [A [Dep] + X [B [Dep]! = C [Dep] Then go (DEP + 1, n, m)
End
The key is to look at Row 4. If conditions are metDep <m and X [A [Dep] + X [B [Dep]! = C [Dep]Then we can go to the next layer for recursion. array X takes only {0, 1}, array c Takes {0, 1, 2}, and array A and array B takes 0 ~ M and M are the maximum number of recursive layers and the size of array X. How many layers can be recursion at most?
[Idea]
For each X [I], only 0 or 1 can be taken. If conditions are met in each layer, the next layer can be entered. This question is very similar to poj 2723.
You can create a 2-Sat graph for the two layers that can be recursive at most.
[Code]
#include<iostream>#include<queue>#include<stack>#include<cstdio>#include<cstring>#include<vector>#define MP make_pair#define SQ(x) ((x)*(x))using namespace std;const int INF = 0x3f3f3f3f;const int MAXN = 10010;const int VN = MAXN*2;const int EN = VN*4;int n, m, s;int a[MAXN], b[MAXN], c[MAXN];struct Graph{ int size, head[VN]; struct{int v, next; }E[EN]; void init(){size=0; memset(head, -1, sizeof(head)); }; void addEdge(int u, int v){ E[size].v = v; E[size].next = head[u]; head[u] = size++; }}g;class Two_Sat{public: bool check(const Graph& g, const int n){ scc(g, 2*n); for(int i=0; i<n; ++i) if(belong[i] == belong[i+n]) return false; return true; }private: void tarjan(const Graph& g, const int u){ int v; dfn[u] = low[u] = ++idx; sta[top++] = u; instack[u] = true; for(int e=g.head[u]; e!=-1; e=g.E[e].next){ v = g.E[e].v; if(dfn[v] == -1){ tarjan(g, v); low[u] = min(low[u], low[v]); }else if(instack[v]){ low[u] = min(low[u], dfn[v]); } } if(dfn[u] == low[u]){ ++bcnt; do{ v = sta[--top]; instack[v] = false; belong[v] = bcnt; }while(u != v); } } void scc(const Graph& g, const int n){ idx = top = bcnt = 0; memset(dfn, -1, sizeof(dfn)); memset(instack, 0, sizeof(instack)); for(int i=0; i<n; ++i){ if(dfn[i] == -1) tarjan(g, i); } }private: int idx, top, bcnt; int dfn[VN], low[VN], sta[VN], belong[VN]; bool instack[VN];}sat;void buildGraph(int dep){ g.init(); for(int i=0; i<dep; ++i){ int x=a[i], y=b[i]; if(c[i]==0){ g.addEdge(x, y+m); g.addEdge(y, x+m); }else if(c[i] == 1){ g.addEdge(x, y); g.addEdge(x+m, y+m); g.addEdge(y, x); g.addEdge(y+m, x+m); }else if(c[i] == 2){ g.addEdge(x+m, y); g.addEdge(y+m, x); } } }int main(){ int nCase; scanf("%d", &nCase); while(nCase--){ scanf("%d%d", &n, &m); for(int i=0; i<m; ++i){ scanf("%d%d%d", &a[i], &b[i], &c[i]); } int l=0, r=m+1, mid, ans; while(l < r){ mid = (l + r) >> 1; buildGraph(mid); if(sat.check(g, m)){ l = mid+1; ans = mid; } else r = mid; } printf("%d\n", ans); } return 0;}