Image processing convolution algorithm implementation and image processing product Algorithm

Source: Internet
Author: User

Image processing convolution algorithm implementation and image processing product Algorithm

Today, I am eager to make the traditional convolution algorithm a pure version of the algorithm logic without any acceleration methods.

After writing this article, I found that the performance is okay. I 'd like to share it with you. If you have optimized it again on this basis, it would be even better.

The algorithm is simple:

inline unsigned char Clamp2Byte(int n) {return (((255 - n) >> 31) | (n & ~(n >> 31)));}void Convolution2D(unsigned char * data, unsigned int width, unsigned int height, unsigned int channels, int * filter, unsigned char filterW, unsigned char cfactor, unsigned char bias) {unsigned char * tmpData = (unsigned char * ) malloc(width * height * channels);int factor = 256 / cfactor;int halfW = filterW / 2;if (channels == 3 || channels == 4) {for (int y = 0; y < height; y++) {int y1 = y - halfW + height;for (int x = 0; x < width; x++) {int x1 = x - halfW + width;int r = 0;int g = 0;int b = 0;unsigned int p = (y * width + x) * channels;for (unsigned int fx = 0; fx < filterW; fx++) {int dx = (x1 + fx) % width;int fidx = fx * (filterW);for (unsigned int fy = 0; fy < filterW; fy++) {int pos = (((y1 + fy) % height) * width + dx) * channels;int * pfilter = & filter[fidx + (fy)];r += data[pos] * ( * pfilter);g += data[pos + 1] * ( * pfilter);b += data[pos + 2] * ( * pfilter);}}tmpData[p] = Clamp2Byte(((factor * r) >> 8) + bias);tmpData[p + 1] = Clamp2Byte(((factor * g) >> 8) + bias);tmpData[p + 2] = Clamp2Byte(((factor * b) >> 8) + bias);}}} elseif (channels == 1) {for (int y = 0; y < height; y++) {int y1 = y - halfW + height;for (int x = 0; x < width; x++) {int r = 0;unsigned int p = (y * width + x);int x1 = x - halfW + width;for (unsigned int fx = 0; fx < filterW; fx++) {int dx = (x1 + fx) % width;int fidx = fx * (filterW);for (unsigned int fy = 0; fy < filterW; fy++) {int pos = (((y1 + fy) % height) * width + dx);int szfilter = filter[fidx + (fy)];r += data[pos] * szfilter;}}tmpData[p] = Clamp2Byte(((factor * r) >> 8) + bias);}}}memcpy(data, tmpData, width * height * channels);free(tmpData);}

Call example:

Example // fuzzy int Blurfilter [25] = {0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0,}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, Blurfilter, 5, 13, 0 ); // motion blur int MotionBlurfilter [81] = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; convolution2D (imgData, imgWidth, imgHeight, imgChannels, MotionBlurfilter, 9, 9, 0); // Edge Detection 1int edges1filter [25] = {-1, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0, 0, 6, 0, 0, 0, 0,-2, 0, 0, 0, 0,-1 ,}; convolution2D (imgData, imgWidth, imgHeight, imgChannels, edges1filter, 5, 1, 0); // Edge Detection 2int edges2filter [9] = {-1,-1,-1,-1, -1, 8,-1,-1,-1,-1}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, edges2filter, 3, 1, 0 ); // sharpen 1int sharpen1filter [9] = {-1,-1,-1,-1,-9,-1,-1,-1,-1 }; convolution2D (imgData, imgWidth, imgHeight, imgChannels, sharpen1filter, 3, 1, 0); // sharpen 2int sharpen2filter [25] = {-1,-1,-1,-1, -1,-1,-1, 2, 2,-1,-1, 2, 8, 2,-1,-1, 2, 2, 2, -1,-1,-1,-1,-1,-1,}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, sharpen2filter, 5, 8, 0 ); // sharpen 3int sharpen3filter [9] = {1, 1,-7, 1, 1}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, sharpen3filter, 3, 1, 0); // embossed 1 int Embossfilter [9] = {-1,-1, 0,-1, 0, 1, 1}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, Embossfilter, 3, 1,128); // emboss2filter 2int emboss2filter [25] = {-1,-1,-1,-1, 0,-1, -1,-1, 0, 1,-1,-1, 0, 1,-1, 0, 1, 1, 1, 1, 1, 1, 1, 1}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, emboss2filter, 5, 1,128); // mean blur 1int meanfilter [9] = {1, 1, 1, 1, 1, 1}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, meanfilter, 3, 9, 0); // The mean value is 2 int mean2filter [81] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, mean2filter, 9, 81, 0 );

The blogger processed the edge detection convolution kernel in a 960x1280 image, which took 100 milliseconds on the VM.

// Edge Detection 1int edges1filter [25] = {-1, 0, 0, 0, 0, 0,-2, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0,-2, 0, 0, 0, 0,-1,}; Convolution2D (imgData, imgWidth, imgHeight, imgChannels, edges1filter, 5, 1, 0 );

:

For more information, see the various encyclopedia websites.

Keywords: Convolution)

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.