Poj3384 Feng Shui semi-plane intersection

Source: Internet
Author: User

// Question: Use two circles to overwrite a polygon and find the center of the two circles (in a certain order) when the maximum area is covered ).
// The polygon is pushed inward to calculate the half plane intersection + the farthest point pair.
// The data here is not big enough. You can use brute force to find the farthest point to 94 ms AC. The Code is as follows:

[Cpp]
# Include <iostream>
# Include <cstdio>
# Include <math. h>
# Define eps 1e-8
// Using namespace std;
Const int MAXN = 202;
Struct point {double x, y ;};
Point points [MAXN], p [MAXN], q [MAXN];
Int n;
Double r;
Bool zero (double x)
{
Return x> 0? X <eps: x>-eps;
}
Double xmult (point p1, point p2, point p0)
{
Return (p1.x-Snapshot X) * (p2.y-Snapshot y)-(p2.x-Snapshot X) * (p1.y-Snapshot y );
}
Int same_side (point p1, point p2, point l1, point l2)
{
Return xmult (l1, p1, l2) * xmult (l1, p2, l2)> eps;
}
Point intersection (point p1, point p2, point p3, point p4)
{
Point ret = p1;
Double t = (p1.x-p3.x) * (p3.y-p4.y)-(p3.x-p4.x) * (p1.y-p3.y ))
/(P1.x-p2.x) * (p3.y-p4.y)-(p3.x-p4.x) * (p1.y-p2.y ));
Ret. x + = t * (p2.x-p1.x );
Ret. y + = t * (p2.y-p1.y );
Return ret;
}
Void polygon_cut (int & n, point * p, point l1, point l2, point side)
{
Point pp [2, 1000];
Int m = 0, I;
For (I = 0; I <n; I ++)
{
If (same_side (p [I], side, l1, l2 ))
Pp [m ++] = p [I];
If (! Same_side (p [I], p [(I + 1) % n], l1, l2)
&&! (Zero (xmult (p [I], l1, l2 ))
& Zero (xmult (p [(I + 1) % n], l1, l2 ))))
Pp [m ++] = intersection (p [I], p [(I + 1) % n], l1, l2 );
}
N = 0;
For (I = 0; I <m; I ++)
If (! I |! Zero (pp [I]. x-pp [I-1]. x) |! Zero (pp [I]. y-pp [I-1]. y ))
P [n ++] = pp [I];
If (zero (p [n-1]. x-p [0]. x) & zero (p [n-1]. y-p [0]. y ))
N --;//
// If (n <3) n = 0;
}
Double distance (point p1, point p2)
{
Return sqrt (p1.x-p2.x) * (p1.x-p2.x) + (p1.y-p2.y) * (p1.y-p2.y ));
}
Void slove (double dis, int & m)
{
Int I;
For (I = 0; I <n; I ++) p [I] = points [I];
For (I = 0; I <n; I ++)
{
Point side;
Point s = points [I], e = points [(I + 1) % n];
Double xx = s. x-e.x, yy = s. y-e.y;
Double dd = sqrt (xx * xx + yy * yy );
S. x + = dis * (-yy)/dd;
S. y + = dis * (xx)/dd;
E. x + = dis * (-yy)/dd;
E. y + = dis * (xx)/dd;
Side. x = s. x-yy;
Side. y = s. y + xx;
Polygon_cut (m, p, s, e, side );
}
}
Int main ()
{

While (scanf ("% d % lf", & n, & r )! = EOF)
{
Int I, j;
For (I = 0; I <n; I ++)
Scanf ("% lf", & points [I]. x, & points [I]. y );
Int m = n;
Slove (r, m );
// For (I = 0; I <m; I ++) printf ("% lf, % lf \ n", p [I]. x, p [I]. y );
Double dis = 0;
Int s = 0, e = 0;
For (I = 0; I <m; I ++)
{
For (j = 0; j <m; j ++)
If (I! = J)
{
Double temp = distance (p [I], p [j]);
If (temp-dis> eps)
{
Dis = temp;
S = I; e = j;
}
}
}
If (p [s]. x-p [e]. x> eps | zero (p [s]. x-p [e]. x) & p [s]. y>-p [e]. y> eps)
{
Point tt = p [s];
P [s] = p [e];
P [e] = tt;
}

Printf ("%. 10lf %. 10lf %. 10lf %. 10lf \ n ", p [s]. x, p [s]. y, p [e]. x, p [e]. y );
}
Return 0;
}

Author: ssslpk

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.