> X1=c (2,3,6,8) > X2=c (1,2,3,4) > a1= (1:100) > length (A1) [1] 100> Length (x1) [1] 4> mode (x1) [1] "Numeric" > Rbind (x1,x2) [, 1] [, 2] [, 3] [, 4]x1 2 3 6 8x2 1 2 3 4> cbind (x1,x2) X1 x2[1,] 2 1[2,] 3 2[3,] 6 3[4,] 8 4
- Averaging, and, multiplication, max, variance, standard deviation
> Mean (x1) [1] 4.75> sum (x1) [1] 19> max (x1) [1] 8> min (x1) [1] 2> var (x1) [1] 7.583333> prod (x1) [1] 288> SD (x1) [1] 2.753785
> 1:10 [1] 1 2 3 4 5 6 7 8 9 10> 1:10-1 [1] 0 1 2 3 4 5 6 7 8 9> 1:10*2 [1] 2 4 6 8 10 12 14 16 18 2 0> a=2:60*2+1> A [1] 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41[20] 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79[39] 81 83 85 87 89 91 93 95 97 99 101 103 105 107 1 111 113 117[58] 119 121> a[5][1] 13> a[-5] [1] 5 7 9 11 15 17 19 21 23 25 27 29 31 33 35 3 7 39 41 43[20] 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81[39] 83 85 87 89 91 93 103 107 109 111 113 101 117 119[58] 121> a[c (2,3,8)][1] 7 9 19> a[a<20][1] 5 7 9 11 13 1 5 19> a[a[3]][1] 21> seq (6,20) [1] 6 7 8 9 ten each (20>) [1] 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41[20] 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79[About] Bayi-----The 101 103 107 109 111 113, 117[58] 119 121> seq (5,121,length=10) [1] 5.00000 17.88889 30.77778 43.66667 56.55556 69.44444 82.33333 [8] 95.22222 108.11111 121.00000
> A=c (2,3,4,2,3,2,1,4,3,2,1) > Which.max (a) [1] 3> A[which.max (a)][1] 4> which (a==2) [1] 1 4 6 10> A[which (a==2)][1] 2 2 2 2> which (a>5) integer (0) > A[which (a>5)]numeric (0) > A=1:20> A [1] 1< C5/>2 3 4 5 6 7 8 9 Ten (a) 20> rev (a) [1] 20 19 18 17 16 15 14 13 9 8 7 6 5 4 3 2 1> a=c (2,3,4,5,6,6,7,8,3,2) > sort (a) [1 ] 2 2 3 3 4 5 6 6 7 8> Rev (sort (a)) [1] 8 7 6 6 5 4 3 3 2 2
> A1=c (1:12) > Matrix (a1,nrow=3,ncol=4) [, 1] [, 2] [, 3] [, 4][1,] 1 4 7 10[2,] 2 5 8 11[3,] 3 6 9 12> Matrix (a1,nrow=4,ncol=3) [, 1] [, 2] [, 3][1,] 1 5 9[2,] 2 6 10[3,] 3 7 11[4,] 4 8 12> Matrix (a1,nrow=4,ncol =3,byrow=t) [, 1] [, 2] [, 3][1,] 1 2 3[2,] 4 5 6[3,] 7 8 9[4,] 12
Matrix addition
> A=matrix (1:12,nrow=3,ncol=4) > t (a) [, 1] [, 2] [, 3][1,] 1 2 3[2,] 4 5 6[3 ,] 7 8 9[4,] ten 12> A=b=matrix (1:12,nrow=3,ncol=4) > A+b [, 1] [, 2] [, 3] [, 4] [1,] 2 8 20[2,] 4 22[3,] 6 24> A-b [, 1 ] [, 2] [, 3] [, 4][1,] 0 0 0 0[2,] 0 0 0 0[3,] 0 0 0 0
Matrix multiplication
> A=matrix (1:12,nrow=3,ncol=4) > B=matrix (1:12,nrow=4,ncol=3) > A%*%b [, 1] [, 2] [, 3][1,] 158 246[2,] 184 288[3,] 330> a=matrix (1:16,nrow=4,ncol=4) > A [, 1] [ , 2] [, 3] [, 4][1,] 1 5 9 13[2,] 2 6 14[3,] 3 7 15[4,] 4 8 16> diag (a) [1] 1 6 16> diag (Diag (a)) [, 1] [, 2] [, 3] [, 4][1, ] 1 0 0 0[2,] 0 6 0 0[3,] 0 0 0[4,] 0 0 0 16> diag (4) [, 1] [, 2] [, 3] [, 4][1,] 1 0 0 0[2,] 0 1 0 0[3,] 0 0 1 0[4,] 0 0 0 1
Matrix inversion
> A=matrix (rnorm) > A [, 1] [, 2] [, 3] [, 4][1,] -1.604650746-2.22482987 1.5094439 1.0070701[2,] 0.006409861-0.01506928-0.6651050-1.9342548[3,] -1.606959408-0.49430092-0.9376593 0.1979031[4,] 0.422441416-0.33201336 0.3848287 1.1256368> Solve (a) [, 1] [, 2] [, 3 ] [, 4][1,] -0.1426715 0.5944611-0.1676185 1.1786143[2,] -0.1804919-0.9604913-0.2055298-1.4528592[ 3,] 0.3168603-0.5776493-0.6252734-1.1661647[4,] -0.1080209-0.3089139 0.2160497 0.4162172
Solving systems of linear equations
> A=matrix (Rnorm (16), BIS)
> A
[, 1] [, 2] [, 3] [, 4]
[1,] -1.604650746-2.22482987 1.5094439 1.0070701
[2,] 0.006409861-0.01506928-0.6651050-1.9342548
[3,] -1.606959408-0.49430092-0.9376593 0.1979031
[4,] 0.422441416-0.33201336 0.3848287 1.1256368
> Solve (a)
[, 1] [, 2] [, 3] [, 4]
[1,]-0.1426715 0.5944611-0.1676185 1.1786143
[2,] -0.1804919-0.9604913-0.2055298-1.4528592
[3,] 0.3168603-0.5776493-0.6252734-1.1661647
[4,] -0.1080209-0.3089139 0.2160497 0.4162172
> A=matrix (Rnorm (16), BIS)
> A
[, 1] [, 2] [, 3] [, 4]
[1,] 1.0451867-0.2426553-0.51232551-0.12062549
[2,] -1.5518006-0.1333096 0.03677731-0.10715366
[3,] -1.0620249-1.3160312 0.01713207 0.09320016
[4,]-0.6664664 2.2398778 1.94861889 0.01788447
> B=c (1:4)
> b
[1] 1 2 3 4
> Solve (A, B)
[1] 0.9840158-4.6924392 8.0064010-24.3295023
Eigenvalues and eigenvectors of matrices
> A=diag (4) +1> a [, 1] [, 2] [, 3] [, 4][1,] 2 1 1 1[2,] 1 2 1 1[3,] 1 1 2 1[4,] 1 1 1 2> A.e=eigen (a,symmetric=t) > A.e$values[1] 5 1 1 1$vectors [, 1] [, 2] [, 3] [, 4] [1,] -0.5 0.8660254 0.0000000 0.0000000[2,] -0.5-0.2886751-0.5773503-0.5773503[3,] -0.5-0.2886751- 0.2113249 0.7886751[4,] -0.5-0.2886751 0.7886751-0.2113249> a.e$vectors%*%diag (a.e$values)%*%t (a.e$ Vectors) [, 1] [, 2] [, 3] [, 4][1,] 2 1 1 1[2,] 1 2 1 1[3,] 1 1 2 1[4,] 1 1 1 2
> X1=c (10,13,14,23,43) > X2=c (12,35,35,67,54) > X=data.frame (x1,x2) > x x1 x21 10 122 13 353 14 354 23 675 4 3 54> Plot (x) #散点图
(X=read.table ("Abc.txt")) #读剪贴板y =read.table ("clipboard", Header=f) yz=read.table ("clipboard", header=t) Z
For statement
> for (i-in 1:59) {a[i]=1*2+3}> a [1] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5[39] 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5> > b=0> for (i in 1:59) {a[i]=i*2+3;b[i]=i*5-4}> b [1] 1 6
11----- - Bayi 91[20] 96 101 106 111 116 121 126 131 136 141 146 151 156 161 166 171 176 181 186[39] 191 196 201 206 211 216 221 226 231 236 241 246 251 256 261 266 271 276 281[58] 286 291
While statement
A[1]=5> i=1> while (a[i]<121) {i=i+1;a[i]=a[i-1]+2}> A [1] 5 7 9 17 43 of the above-the- 41[20] All in all, a . 79[39------- 97 99 101 103 105 107 109 111 113 115 117[58] 119 121
Source () print ()
R and Data analysis old notes (i) Use of basic mathematical functions