machine learning nanodegree

Want to know machine learning nanodegree? we have a huge selection of machine learning nanodegree information on alibabacloud.com

From machine learning to learning machines, data analysis algorithms also need a good steward

understand the task, so "save the Earth" to understand "kill all human beings." This is like a typical predictive algorithm that literally understands the task and ignores the other possibilities or the practical significance of the task.So, in January 2016, Harvard Business School professor Michael Luca, professor of economics Sendhil Mullainathan, and Cornell University professor Jon Kleinberg, published an article titled "Algorithm and Butler" in the Harvard Commercial Review. Call upon the

Definition of machine learning (learning)

There are two definitions related to machine learning:1) give the computer the research field of learning ability without fixed programming.2) A computer program that can learn from a number of tasks (T) and performance metrics (P), Experience (E). In learning, the performance p of task t can improve experience E with

Stanford 11th: Design of machine learning systems (machines learning system designs)

11.1 What to do first11.2 Error AnalysisError measurement for class 11.3 skew11.4 The tradeoff between recall and precision11.5 Machine-Learning data 11.1 what to do firstIn the next video, I'll talk about the design of the machine learning system. These videos will talk about the major problems you will encounte

Microsoft Learning Azure Machine learning Getting Started overview

Azure Machine Learning ("AML") is a Web-based computer learning service that Microsoft has launched on its public cloud azure, a branch of AI that uses algorithms to make computers recognize a large number of mobile datasets. This approach is able to predict future events and behaviors through historical data, which is significantly better than traditional forms

Stanford University public Class machine learning: Machines Learning System Design | Error metrics for skewed classes (definition of skew class issues and evaluation measures for skew class issues: precision ratio (precision) and recall rate (recall))

0.5% of the patients in our screening program are suffering from cancer. In this case, the error rate of 1% is no longer as good.For example, here is a line of code that ignores the input value x, so that y is always equal to 0, so it always predicts that no one has cancer. Then this algorithm actually has only 0.5% error rate. So this is even better than the 1% error rate we got before, which is a non-machine le

Talk about unsupervised learning in machine learning

Machine learning is divided into supervised machine learning, unsupervised machine learning, and semi-supervised machine learning. The crite

Machine Learning Learning Note 1

Machine learning Learning Note 1 Zhou Zhihua machine learning Flyu6Time:2016-6-12 Basic Concepts of learning Learning Style (Le

R Language Learning notes-machine learning 1-3 Chapters

After tossing the crawler and some interesting content, I recently in the R language for simple machine learning knowledge, the main reference is "machine learning-Practical Case Analysis" this book.This book is a rare, purely r language-based machine

Machine Learning Machines Learning (by Andrew Ng)----Chapter Two univariate linear regression (Linear Regression with one Variable)

converge or even diverge. .One thing worth noting:As we approach the local minimum, the guide values will automatically become smaller, so the gradient drop will automatically take a smaller amplitude, which is the practice of gradient descent. So there's actually no need to reduce the alpha in addition, we need a fixed (constant) learning rate α. 4. Gradient Descent linear regression (Gradient descent for Linear Regression) This is the method of us

Machine learning Algorithms Study Notes (5)-reinforcement Learning

: Random initialization Loop until convergence { Each State transfer count in the sample is used to update and R Use the estimated parameters to update V (using the value iteration method of the previous section) According to the updated V to re-draw } In step (b) We are going to do a value update, which is also a loop iteration, in the previous section we solved v by initializing v t

Machine learning--Neighbor Component Analysis (NCA) algorithm and Metric learning

1. Nearest Neighbor Component analysis (NCA) algorithmAbove content reproduced from: http://blog.csdn.net/chlele0105/article/details/130064432. Metric LearningIn machine learning, the main purpose of dimensionality reduction of high dimensional data is to find a suitable low-dimensional space, in which the learning can be better than the original space performanc

See Machine learning Machines learning in ten pictures with 10 images

I find myself coming back to the same few pictures when explaining basic machine learning concepts. Below is a list I find most illuminating.1. Test and Training error: Why lower training error was not always a good thing:esl figure 2.11. Test and training error as a function of model complexity.2. Under and overfitting: PRML figure 1.4. Plots of polynomials has various orders M, shown as red curves, fitted

"Reprint" Learning Guide for machine learning beginners (experience sharing)

Learning Guide for machine learning beginners (experience sharing)2013-09-21 14:47I computer research two, the professional direction of natural language processing, individuals interested in machine learning, so began to learn. So, this guy is a rookie ... It is because of

The learning direction of FPGA machine learning

After 2 months of knowledge of machine learning. I've found that machine learning has a variety of directions. Page sort. Speech recognition, image recognition, recommender system, etc. Algorithms are also varied. After seeing the other books, I found that except for the K-mean clustering. Bayesian, neural network, onl

Writing machine learning from the perspective of Software Project Project analysis of main supervised learning algorithms in 3--

Project applicability analysis of main machine learning algorithmsSome time ago Alphago with the Li Shishi of the war and related deep study of the news brush over and over the circle of friends. Just this thing, but also in the depth of machine learning to further expand, and the breadth of

AI machine Learning-decision tree algorithms-Concepts and learning processes

you to someone.Daughter: How old are you?Mother: 26.Daughter: Long handsome not handsome?Mother: Very handsome.Daughter: Is the income high?Mother: Not very high, medium condition.Daughter: Is it a civil servant?Mother: Yes, I work in the Inland Revenue Department.Daughter: Well, I'll meet you.Use decision trees to represent:As a code farmer often will constantly knock if, else if, else, in fact, has been used in the decision tree thinking. Just have you ever thought, there are so many conditio

Robot Learning Cornerstone (Machine learning foundations) Learn Cornerstone Job four q13-20 MATLAB implementation

Hello everyone, I am mac Jiang, today and everyone to share the coursera-ntu-machine learning Cornerstone (Machines learning foundations)-Job four q13-20 MATLAB implementation. The previous code was implemented through C + +, but found that C + + implementation of the code is too cumbersome, the job also to change the parameter values frequently, so choose to use

Robot Learning Cornerstone (Machine learning foundations) Learn Cornerstone Job four q13-20 MATLAB implementation

Hello everyone, I am mac Jiang, today and everyone to share the coursera-ntu-machine learning Cornerstone (Machines learning foundations)-Job four q13-20 MATLAB implementation.Once the code is implemented through C + +. However, it is too cumbersome to discover that C + + implements this code. This job also need to change the number of participants frequently, so

Coursera Machine Learning Cornerstone 4th talk about the feasibility of learning

This section describes the core of machine learning, the fundamental problem-the feasibility of learning. As we all know about machine learning, the ability to measure whether a machine learni

How to select Super Parameters in machine learning algorithm: Learning rate, regular term coefficient, minibatch size

This article is part of the third chapter of "Neural networks and deep learning", which describes how to select the value of the initial hyper-parameter in the machine learning algorithm. (This article will continue to add)Learning Rate (learning rate,η)When using the gradie

Total Pages: 15 1 .... 11 12 13 14 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.