andrew ng machine learning python

Want to know andrew ng machine learning python? we have a huge selection of andrew ng machine learning python information on alibabacloud.com

Machine Learning Classic algorithm and Python implementation--meta-algorithm, AdaBoost

in the first section, the meta-algorithm briefly describesIn the case of rare cases, the hospital organizes a group of experts to conduct clinical consultations to analyze the case to determine the outcome. As with the panel's clinical consultations, it is often better to summarize a large number of individual opinions than a person's decision. Machine learning also absorbed the ' Three Stooges top Zhuge Li

A classical algorithm for machine learning and python implementation---naive Bayesian classification and its application in text categorization and spam detection

called the polynomial model, but its class conditional probability calculation formula is not accurate.Referencesalgorithm Grocer--naive Bayesian classification of classification algorithm (Naive Bayesian classification)study of naive Bayesian text classification algorithmThe author of this paper, Adan, derives from: The classical algorithm of machine learning and the implementation of

Machine learning Python Implementation AdaBoost

" from NumPy Import *def loadsimpdata (): Datmat = Matrix ([[[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) Classlabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datmat,classlabelsdef loaddataset (fileName): #general function to Parse tab-delimited Floats numfeat = Len (open (FileName). ReadLine (). Split (' \ t ')) #get number of fields Datamat = [ ]; Labelmat = [] fr = open (fileName) for line in Fr.readlines (): Linearr =[] curline = Line.strip (). Split (' \ t ') for I in

Machine learning Python Implementation AdaBoost

such as the followingHere is an example of a Python implementation:#-*-coding:cp936-*-"Created on Nov, 2010Adaboost was short for Adaptive Boosting@author:peter" from NumPy Import *def loadsimpdata (): Datmat = Matrix ([[[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) Classlabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datmat,classlabelsdef loaddataset (fileName): #general function to Parse tab-delimited Floats numfeat = Len (open (File

Python machine learning notes: Using Keras for multi-class classification

Keras is a python library for deep learning that contains efficient numerical libraries Theano and TensorFlow. The purpose of this article is to learn how to load data from CSV and make it available for keras use, how to model the data of multi-class classification using neural network, and how to use Scikit-learn to evaluate Keras neural network models.Preface, the concept description of two classificatio

The implementation of the K-means clustering algorithm in "machine learning combat" by Python

clustering are generally relatively random, generally not very ideal, and the final result tends to be indistinguishable from natural clusters, in order to avoid this problem, the binary K mean clustering algorithm is used in this paper .The implementation of the binary K-means clustering Python is given in the next blog post.Complete code and test data can be obtained here, or you want to get the source from the connection, because the copy code fro

Python Machine Learning Package

Common Python machine learning packagesNumpy: A package for scientific computingPandas: Provides high-performance, easy-to-use data structures and data analysis toolsSCIPY: Software for math, science and engineeringStatsmodels: Used to explore data, estimate statistical models, statistical testsScikit-learn: Provides classic

Python Machine learning-clustering

K-means Clustering algorithm Test: #-*-coding:utf-8-*-"""Created on Thu 10:59:20 2017@author:administrator"""" "There are eight major variable data on the average annual consumer spending of urban households in 31 provinces in 1999, with eight variables: food, clothing, household equipment supplies and services, health care, transportation and communications, cultural services for recreational education, residential and miscellaneous goods and services. The 31 provinces are c

Preparing for machine learning with Python

The language used for machine learning is python. Here's how to get started with Python for "machine learning." (Environment: CentOS 7)1, two important packagesNumPy and SciPy. (http://scipy.org/scipylib/download.html) mainly deal

Implementation of knn-k nearest neighbor algorithm for the Python implementation of machine learning algorithm

1. Background In the future, the blogger will update the machine learning algorithm and its Python simple implementation regularly every week. Today's algorithm is the KNN nearest neighbor algorithm. KNN algorithm is a kind of supervised learning classifier class algorithm. What is supervised

0 Basics to Mastery: Python Big Data and machine learning pandas-data manipulation

Here is still to recommend my own built Python development Learning Group: 483546416, the group is the development of Python, if you are learning Python, small series welcome you to join, everyone is the software Development Party, not regularly share dry goods (only

Python machine learning the latest algorithm

you separate a room with a wall, you're trying to create two different populations in the same room. Similarly, decision trees are dividing the population into different groups as much as possible. For more information, see: Simplification of decision tree algorithms Python code 7, K mean value algorithm k– mean algorithm is a kind of unsupervised learning algorithm, it can solve the problem of clustering.

"Play machine learning with Python" KNN * sequence

), though it's no better than Microsoft's Visual Studio, but it's much more than the one that comes with it-if it's written in C, Helpless is written in Java, startup speed huge slow ~ ~Recently turned over the book "Machine Learning in Action". The book uses Python to implement some machine

Machine Learning Python environment settings

[Email protected]:~# pip Install-u Scikit-learnNo problemSuccessfully installed scikit-learncleaning up ...Other workarounds see: http://www.xuebuyuan.com/1157602.htmlInstalling NETWORKXwget https://pypi.python.org/packages/source/n/networkx/networkx-1.10.tar.gz#md5= EB7A065E37250A4CC009919DACFE7A9DCD Networkx-1.10python setup.py InstallTest it:[Email protected]:~/networkx-1.10# pip listmatplotlib (1.3.1) networkx (1.10) numpy (1.8.2) pip (1.5.4) Scikit-learn ( 0.16.1) scipy (0.13.3) setuptools

Python Machine Learning Practical tutorials

Python Machine Learning Practical tutorialsShare Network address--https://pan.baidu.com/s/1miib4og Password: WTIWThe course is really good, share to everyoneMachine Learning (machines learning, ML) is a multidisciplinary interdisciplinary subject involving probability theory

The path of machine learning: The main component analysis of the Python feature reduced dimension PCA

the data after dimensionality reduction -Pca_svc =linearsvc () the #Learning - Pca_svc.fit (Pca_x_train, Y_train)WuyiPca_y_predict =pca_svc.predict (pca_x_test) the - #4 Model Evaluation Wu Print("accuracy of raw data:", Svc.score (X_test, y_test)) - Print("other ratings: \ n", Classification_report (Y_test, Y_predict, Target_names=np.arange (10). Astype (str ))) About $ Print("data accuracy rate after dimensionality reduction:", Pca_svc.score (Pca

Ubuntu Installation Python machine learning Package

1. Install Pipmkdir ~/vi ~/.pip/pip.conf[global]trusted-host=mirrors.aliyun.comindex -url=http://https://bootstrap.pypa.io/get-pip.pysudo python get---9.0. 1 from/usr/local/lib/python2. 7 2.7)2. Install the Machine learning PackageThe following installation package is not chaotic due to dependenciessudo Install sudo install sudo install sudo install scipyError:S

"Machine learning Combat" python implementation of text classifier based on naive Bayesian classification algorithm

============================================================================================ "Machine Learning Combat" series blog is Bo master reading " Machine learning Combat This book's notes, including the understanding of the algorithm and the Python code implementatio

Python machine learning: 5.6 Using kernel PCA for nonlinear mapping

as the similarity of two vectors.The commonly used kernel functions are: Polynomial cores: , which is the threshold value, is the index set by the user. Hyperbolic tangent (sigmoid) Cores: Radial basis function core (Gaussian core): Now summarize the steps of the nuclear PCA, taking the RBF nucleus as an example:1 compute the kernel (similarity) matrix K, which is the calculation of any two training samples:Get K:For example, if the training set has 10

Python Machine Learning decision tree

This article describes the python Machine Learning Decision tree in detail (demo-trees, DTs) is an unsupervised learning method for classification and regression. Advantages: low computing complexity, easy to understand output results, insensitive to missing median values, and the ability to process irrelevant feature

Total Pages: 14 1 .... 10 11 12 13 14 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.