andrew ng machine learning python

Want to know andrew ng machine learning python? we have a huge selection of andrew ng machine learning python information on alibabacloud.com

Python implementations of machine learning Algorithms (1): Logistics regression and linear discriminant analysis (LDA)

First of all, to collect ...This article is for the author after learning Zhou Zhihua Teacher's machine study material, writes after the class exercises the programming question. Previously placed in the answer post, now re-organized, will need to implement the code to take out the part of the individual, slowly accumulate. Want to write a machine

Start machine learning with Python (3: Data fitting and generalized linear regression)

Prediction problems in machine learning are usually divided into 2 categories: regression and classification .Simply put, regression is a predictive value, and classification is a label that classifies data.This article describes how to use Python for basic data fitting, and how to analyze the error of fitting results.This example uses a 2-time function with a ra

Python machine learning: 7.2 Voting with different classification algorithms

This section learns to use Sklearn for voting classification, see a specific example, the dataset uses the Iris DataSet, using only the sepal width and petal length two dimension features, Category we also only use two categories: Iris-versicolor and Iris-virginica, the standard uses ROC AUC.Python Machine learning Chinese catalog (http://www.aibbt.com/a/20787.html)Reprint please specify the source,

How to implement common machine learning algorithms with Python-1

Recently learned about Python implementation of common machine learning algorithms on GitHubDirectory First, linear regression 1. Cost function2. Gradient Descent algorithm3. Normalization of the mean value4. Final running result5, using the linear model in the Scikit-learn library to implement Second, logistic regression 1. Cost funct

Python Machine learning Case series Tutorial--LIGHTGBM algorithm

Full Stack Engineer Development Manual (author: Shangpeng) Python Tutorial Full solution installation Pip Install LIGHTGBM Gitup Web site: Https://github.com/Microsoft/LightGBM Chinese Course http://lightgbm.apachecn.org/cn/latest/index.html LIGHTGBM Introduction The emergence of xgboost, let data migrant workers farewell to the traditional machine learning algo

Python Automation Development Learning 12-Bastion Machine development

module. But this and the original SSH ratio is still not very stable, not very useful. Not suitable for production environments. To be useful or to change the native SSH, but we will not, we will only change Python. In short this chapter is to achieve a fortress machine function, really want to do a good thing to say later.The more famous is probably this: jumpserver-open-source Springboard machineLong con

"Machine Learning in Python" (NumPy)

~1000Importtimeitnormal_py_sec= Timeit.timeit ('sum (x*x for x in Xrange ())', number= 1000) Naive_np_sec= Timeit.timeit ('sum (na*na)', Setup="Import NumPy as Np;na=np.arange (+)", number= 1000) Good_np_sec= Timeit.timeit ('Na.dot (NA)', Setup="import NumPy as NP; Na=np.arange (+)", number= 1000)Print("Normal Python:%f sec"%normal_py_sec)Print("Naive Python:%f sec"%naive_np_sec)Print("Good NumPy:%f sec"%go

Start machine learning with Python (7: Logistic regression classification)--GOOD!!

from:http://blog.csdn.net/lsldd/article/details/41551797In this series of articles, it is mentioned that the use of Python to start machine learning (3: Data fitting and generalized linear regression) refers to the regression algorithm for numerical prediction. The logistic regression algorithm is essentially regression, but it introduces logic functions to help

Some resources for Python data analysis and machine learning

https://github.com/search?l=Pythono=descq=pythons=starstype=Repositoriesutf8=%E2%9C% 93Https://github.com/vinta/awesome-pythonHttps://github.com/jrjohansson/scientific-python-lecturesHttps://github.com/donnemartin/data-science-ipython-notebooksHttps://github.com/rasbt/python-machine-learning-bookHttps://github.com/scik

The path of machine learning: A python linear regression classifier for predicting benign and malignant tumors

Rate the Fl-score the Support the 98 Logistic regression accuracy rate: 0.9707602339181286 About Other indicators of logistic regression: - Precision recall F1-score support101 102 benign 0.96 0.99 0.98103 Malignant 0.99 0.94 0.96104 the avg/total 0.97 0.97 0.97 171106 107 estimation accuracy of stochastic parameters: 0.9649122807017544108 Other indicators of stochastic parameter estimation:109 Precision recall F1-score support the 111 benign 0.97 0.97 0.97 the malignant 0.96 0.96 0.96113 th

"Python Machine Learning" notes (iv)

different features to the same interval: normalization and normalizationNormalization:From sklearn.preprocessing import MinmaxscalerStandardization:From sklearn.preprocessing import StandardscalerSelect a feature that is meaningfulIf a model behaves much better than a test data set on a training dataset, it means that the model is too fit for training data.The commonly used schemes to reduce generalization errors are:(1) Collect more training data(2) Introduction of penalty by regularization(3)

[Machine Learning Notes] Introduction to PCA and Python implementations

matrix matrices, and the column represents the feature, where the percentage represents the variance ratio of the number of features required before taking the default to 0.9" "defPCA (datamat,percentage=0.9): #averaging for each column, because the mean value is subtracted from the calculation of the covarianceMeanvals=mean (datamat,axis=0) meanremoved=datamat-meanvals#CoV () Calculating varianceCovmat=cov (meanremoved,rowvar=0)#using the Eig () method in the module linalg for finding eigen

Machine Learning notes-----ID3 algorithm for Python combat

criteria for the end of recursion are:1: All class tags are exactly the same, return the class label (this is not nonsense, all the same, the class of the hair)2: Using all the groupings or not dividing the dataset into groups that contain only unique categories, since we cannot return a unique one, then we are represented by a wave. Is our majority voting mechanism above, returning the category with the most occurrences. This is not the NPC,.The code is as follows:People can not understand the

A tutorial on the machine learning of Bayesian classifier using python from zero _python

Naive Bayesian algorithm is simple and efficient, and it is one of the first ways to deal with classification problems. With this tutorial, you'll learn the fundamentals of naive Bayesian algorithms and the step-by-step implementation of the Python version. Update: View subsequent articles on naive Bayesian use tips "Better Naive bayes:12 tips to get the Most from the Naive Bayes algorithm"Naive Bayes classifier, Matt Buck retains part of the copyri

Installation of 64-bit Python under windows and installation of machine learning related packages (practical)

享平台来找到numpy, scipy and Matplotlib, Here are all. WHL files, which need to be installed via PIP, so there is an important preparation is easy_install pip to complete the PIP installation, after the installation is successful, it can be installed on the above three respectively. WHL for installation in Pip install **.py.5. Download the most important machine learning package: Scikit-learn, the package install

Python machine learning: 6.6 Different performance evaluation indicators

In the previous chapters, we have been using the accuracy rate (accuracy) to evaluate the performance of the model, which is usually a good choice. In addition, there are many evaluation indicators, such as precision (precision), recall rate (recall) and F1 value (F1-score).Confusion matrixBefore explaining the different evaluation indicators, let's start by learning a concept: The confusion matrix (confusion matrix), which shows the matrix of the

Machine learning Python Instance completion-decision tree

bestfeatue in creating is:0the bestfeatue in creating are : 0{' no surfacing ': {0: ' No ', 1: {' flippers ': {0: ' No ', 1: ' Yes '}}}It is best to increase the classification function using the decision treeAlso because building a decision tree is time-consuming, because it is best to serialize the constructed tree through Python's pickle and save the object inOn the disk, and then read it when neededdef classify (Inputtree,featlabels,testvec): firststr = Inputtree.keys () [0] seconddic

Machine learning Path: The python K-nearest neighbor regression predicts Boston rates

), + Ss_y.inverse_transform (dis_knr_y_predict))) the Print("the average absolute error of the distance weighted K-nearest neighbor regression is:", Mean_absolute_error (Ss_y.inverse_transform (y_test), - Ss_y.inverse_transform (dis_knr_y_predict))) $ the " " the the default evaluation value for the average K-nearest neighbor regression is: 0.6903454564606561 the the r_squared value of the average K-nearest neighbor regression is: 0.6903454564606561 the Mean square error of average K nearest ne

Python machine learning numpy function library

are slightly different, and many very small elements are left in the matrix, which results from the computer processing error. Enter the following command to get the error value:>>> MyEye = Randmat*invrandmat>>> Myeye-eye (4)Matrix ([[ 0.00000000e+00, -4.44089210e-16, -4.44089210e-16, -3.33066907E-16], [ -8.88178420e-16, 2.22044605e-16, 0.00000000e+00, 5.55111512E-17], [ 4.44089210e-16, 0.00000000e+00, 0.00000000e+00, -5.55111512E-17],

Machine learning python for SVD decomposition

This article is a combination of the recommended algorithm and SVD in conjunction with machine learning combat.Any matrix can be decomposed into the form of SVD.In fact, the SVD meaning is to use the transformation of the feature space to map the data, the following will be devoted to the basic concept of SVD, first give a python, here first give a simple matrix,

Total Pages: 14 1 .... 10 11 12 13 14 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.