]) $self.errors_=[] - - for_inchRange (self.n_iter): theerrors=0 - forXi,targetinchzip (x, y):Wuyi #calculates the error between the forecast and the actual value multiplied by the learning rate theupdate=self.eta* (target-Self.predict (xi)) -self.w_[1:]+=update*XI WuSelf.w_[0]+=update*1 -Errors + = Int (update!=0) About self.errors_.append (Errors) $ return Self - - #define the p
1> supervised Learning (classification): First let the machine learn the sample data of each flower, and then let him according to this information, the non-marked flowers of the type of image classification.2> Characteristics: We call the results of all measurements in the data a feature.2> cross-validation: Extreme call-to-law (leave-one-out) takes a sample from the training set and trains a model on the
Sample of the data provided in the machine learning in action, which is said to be the characteristics of each candidate on a dating site, and how much the current person likes them. A total of 1k data, the first 900 as a training sample, the last 100 as a test sample.The data format is as follows:468933.5629760.445386didntlike81783.2304821.331698smalldoses557833.6125481.551911didntlike11480.0000000.332365s
[i]) if (classifierresu Lt! = Datinglabels[i]): ErrOrcount + = 1.0 print "The total error rate is:%f"% (Errorcount/float (numtestvecs)) Print error count def img2vector (filename): Returnvect = zeros ((1,1024)) FR = open ( FileName) For I in range (+): LINESTR = Fr.readline () F or J in range (+): RETURNVECT[0,32*I+J] = Int (linestr[j]) RETURN RET Urnvectdef handwritingclasstest (): hwlabels = [] trainingfilelist = Listdir (' trainingDigits ') #load the training
System: OS X 10.11.6
The MAC system has its own Python2.7, using the Easy_install command with its own system to install the modules online. If you need to use the PYTHON3 environment, python3.5 is invoked at the terminal input Python3 after installing the Python3.5.1, view Python version
Python
2, install NumPyNumPy is a Python package. It represents "Numer
In the model training, especially in the training set to do cross-validation, usually want to save the model, and then put on a separate test set test, the following is the Python training model to save and reuse.Scikit-learn already has the model persisted operation, the import joblib canfromimport joblibModel Save>>> Os.chdir ( "Workspace/model_save" ) >>> from sklearn import SVM >>> X = [[0 , 0 ], [1 , 1 ]]>>> y = [ 0 , 1 ]>>> CLF = SVM. SV
Python code implementation on the perception machine ----- Statistical Learning Method
Reference: http://shpshao.blog.51cto.com/1931202/1119113
1 #! /Usr/bin/ENV Python 2 #-*-coding: UTF-8-*-3 #4 # Untitled. PY 5 #6 # copyright 2013 T-dofan
There are still a few questions, the book's adjustment strategy is: Wi = wi
Before installing Scikit-learn, you need to install numpy,scipy. However, there are always errors when installing scipy (pip install scipy). After a series of lookups, the reason is that scipy relies on numpy and many other libraries (such as Lapack/blas), but these libraries are not easily accessible under Windows.After finding, the discovery can be solved by another way, http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpyDownload here:
Numpy-1.11.2+mkl-cp34-cp34m-win32.whl
Scipy-0.18.1-c
Small task: Achieve picture classification1. Picture materialPython bulk compress jpg images: PiL library resizehttp://blog.csdn.net/u012234115/article/details/502484092. Environment ConstructionInstallation version of Python under Windows comparison 2.7 vs 3.6Https://pypi.python.org/pypiInstallation of the PIL Library under WindowsHttps://pypi.python.org/pypiInstallation of the PIL Library under Windowshttp://zjfsharp.iteye.com/blog/2311523Installati
is the custom of naming in Python? I found that if the variable name was completely expanded, it would be too long-my MacBook Pro was too ugly to show up. This is followed by the variable shorthand naming of C + +.V. Entrance Call functionThe main function, similar to C + +. As soon as you run the knn.py script, the code is executed first:if __name__ = = ' __main__ ': print "You are running knn.py " CLASSIFYSAMPLEFILEBYKNN (' datingSetOne.txt '
): # Extend the Input feature vector as a feature matrix linenum = featurematrix.shape[0] featurematrixin = Np.tile ( Featurevectorin, (linenum,1)) # Calculate the Euclidean distance between the matrix Diffmatrix = featurematrixin -Featurematrix Sqdiffmatrix = Diffmatrix * * 2 Distancevaluearray = Sqdiffmatrix.sum (Axis=1) Distancevaluearray = Distancevaluearray * * 0.5 return DistancevaluearrayUsed in the numpy of the more distinctive things. The practice is to first
classes in the data. - -Many, many more ... the the a total of 150 data samples the evenly distributed over 3 subspecies the 4 petals per sample, calyx shape Description - " " the the " " the 2 dividing the training set and the test set94 " " theX_train, X_test, y_train, y_test =train_test_split (Iris.data, the Iris.target, thetest_size=0.25,98Random_state=33) About - " "101 3 K Nearest Neighbor Classifier learning model and prediction102 " "10
Citycluster[label[i]].append (Cityname[i]) #将每个簇的城市输出For I in range (len (citycluster)):Print ("expenses:%.2f"% expenses[i]) #将每个簇的平均花费输出Print (Citycluster[i])Click to run, you can come out results.Where the N_clusters class, the consumption level of similar cities gathered in a classExpense: The numerical plus of the central point of the cluster, that is, the average consumption levelImplementation process:1, establish the project, import Sklearn related packageImport NumPy as NPFrom Sklearn.cl
)]=1 else:print "The word:%s is not in my vocabulary!" %word return returnvecdef TRAINNBC (trainsamples,traincategory): Numtrainsamp=len (Trainsamples) NumWords=len (train Samples[0]) pabusive=sum (traincategory)/float (numtrainsamp) #y =1 or 0 feature Count P0num=np.ones (numwords) P1NUM=NP.O NES (numwords) #y =1 or 0 category count P0numtotal=numwords p1numtotal=numwords for I in Range (Numtrainsamp): if Traincategory[i]==1:p0num+=trainsamples[i] P0numtotal+=sum (Trainsamples[i]) E
attribute in the data set. The general situation is somewhere between the two.D. High-dimensional mappingMap properties to high-dimensional space. This is the most precise approach, which completely retains all the information and does not add any additional information. For example, Google, Baidu's CTR Prediction model, pre-processing will be all the variables to deal with this, up to hundreds of millions of dimensions. The benefit of this is that the entire information of the original data is
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.