andrew ng machine learning python

Want to know andrew ng machine learning python? we have a huge selection of andrew ng machine learning python information on alibabacloud.com

The linear regression of Python machine learning

=linearr.predict (X_train) #基于训练集得到的线性y值Plt.figure ()Plt.scatter (x_train,y_train,color= ' green ') #原始训练集数据散点图Plt.plot (x_train,y_train_pred,color= ' black ', linewidth=4) #线性回归的拟合线Plt.title (' Train ') #标题Plt.show ()Y_test_pred=linearr.predict (X_test)Plt.scatter (x_test,y_test,color= ' green ') #绘制测试集数据散点图Plt.plot (x_test,y_test_pred,color= ' black ', linewidth=4) #基于线性回归的预测线Plt.title (' Test ')Plt.show ()Print (' mse= ', Sm.mean_squared_error (y_test,y_test_pred)) #MSE值Print (' r2= ', Sm.r2_

Python numpy machine Learning Library Use example

Installation sudo yum install NumPy From numpy Import * Produces an array Random.rand (4,5) Result Array ([[0.79056842, 0.31659893, 0.34054779, 0.97328131, 0.32648329], [0.51585845, 0.70683055, 0.31476985, 0.07952725, 0.80907845], [0.81623517, 0.61038487, 0.66679161, 0.77412742, 0.03394483], [0.41758993, 0.54425978, 0.65350633, 0.90397197, 0.72706079]]) Produce a matrix >>> Randmat=mat (Random.rand (bis)) >>> randmat.i Matrix ([[[1.72265179, 0.82071484, 0.8218207,-3.20005387], [0.60602642,-1.28

Machine learning Path: Python naive Bayesian classifier Predictive news category

Misc.forsale 0.91 0.70 0.79 257 the Rec.autos 0.89 0.89 0.89 238 - Rec.motorcycles 0.98 0.92 0.95 276 - Rec.sport.baseball 0.98 0.91 0.95 251 the Rec.sport.hockey 0.93 0.99 0.96 233 the Sci.crypt 0.86 0.98 0.91 238 the sci.electronics 0.85 0.88 0.86 249 the sci.med 0.92 0.94 0.93 245 - sci.space 0.89 0.96 0.92 221 the Soc.religion.christian 0.78 0.96 0.86 232 the talk.politics.guns 0.88 0.96 0.92 251 the talk.politics.mideast 0.90 0.98 0.94 23194 Talk.politics.misc 0.79 0.89 0.84 188 the Talk.r

The way of the rookie--nonlinear regression of machine learning personal understanding and Python implementation

:", X) - Print("Y:", Y) - innumiterations=100000 -alpha=0.0005 toTheta=np.ones (x.shape[1]) +Theta=graientdescent (x,y,theta,alpha,x.shape[0],numiterations) - Print(Theta)Operation Result:...... Too many output data to intercept only the next more than 10 linesIteration 99988/cost:3.930135Iteration 99989/cost:3.930135Iteration 99990/cost:3.930135Iteration 99991/cost:3.930135Iteration 99992/cost:3.930135Iteration 99993/cost:3.930135Iteration 99994/cost:3.930135Iteration 99995/cost:3.930135Iterat

Machine learning python combat----linear regression

* (XMAT.T * (Weights *Ymat)) returnTestPoint *SigmadefLwlrtest (Testarr,xarr,yarr,k = 1.0): M=shape (Testarr) [0] Yhat=zeros (m) forIinchRange (m): Yhat[i]=LWLR (testarr[i],xarr,yarr,k)returnYhatThe LWLR () function is the code for locally weighted linear regression, and the function of the lwlrtest () function is to make the LWLR () function traverse the entire data set. We also need to draw a picture to see how the results fit. def PlotLine1 (testarr,xarr,yarr,k = 1.0 = Mat (Xarr) ymat = Ma

Python Machine Learning

[:, 1].max () + 1 xx1, xx2 = Np.meshgrid (Np.arange (X1_min, X1_max, resolution), Np.aran GE (X2_min, X2_max, resolution)) Z = Classifier.predict (Np.array ([Xx1.ravel (), Xx2.ravel ()]). T) Z = Z.reshape (xx1.shape) Plt.contourf (xx1, xx2, Z, alpha=0.4, Cmap=cmap) Plt.xlim (Xx1.min (), Xx1.max ()) Plt.ylim (Xx2.min (), Xx2.max ()) # Plot all samples for IDX, C1 in enumerate (Np.unique (y)): Print Idx,c1 Plt.scatter (X=x[y = = C1, 0], Y=x[y = = C1, 1], alpha=0.8, C=cmap (IDX), MARKER=M

Model Evaluation and parameter tuning in Python machine learning

', Standardscaler ()), ('CLF', Logisticregression (penalty='L2', random_state=0)]) train_sizes, train_scores, Test_scores= Learning_curve (ESTIMATOR=PIPE_LR, X=x_train, Y=y_train, Train_sizes=np.linspace (0.1, 1.0, ten), cv=10, N_jobs=1) Train_mean= Np.mean (Train_scores, Axis=1) TRAIN_STD= NP.STD (Train_scores, Axis=1) Test_mean= Np.mean (Test_scores, Axis=1) TEST_STD= NP.STD (Test_scores, Axis=1) Plt.plot (train_sizes, Train_mean, color='Blue', marker='0', Markersize=5, label='Training Accurac

2018AI Artificial Intelligence basic Combat Python machine deep learning algorithm video tutorial

understand computer knowledge, psychology and philosophy. Artificial intelligence consists of a very wide range of sciences, consisting of a variety of fields, such as machine learning, computer vision, and so on, in general, one of the main goals of AI research is to make machines capable of doing complex work that normally requires human intelligence. But different times, different people's understanding

Python machine learning-predictive analytics core algorithm: A general process for building predictive models

See Original book section 1.5General process for building predictive modelsThe problem of the daily language expression--the problem of the mathematical language restatementRestatement of problems, extraction features, training algorithms, evaluation algorithmsFamiliar with the input data structure of the different algorithms:1. Features required to extract or combine predictions2. Set the training target3. Training model4. Evaluate the performance of the model on training dataMachine learning:D

Machine learning and Neural Networks (ii): Introduction of Perceptron and implementation of Python code __python

This article mainly introduces the knowledge of Perceptron, uses the theory + code practice Way, and carries out the learning of perceptual device. This paper first introduces the Perceptron model, then introduces the Perceptron learning rules (Perceptron learning algorithm), finally through the Python code to achieve

Python machine learning and practical knowledge Summary

The task of supervised learning in machine learning focuses on predicting the target/marker of an unknown sample based on existing empirical knowledge.According to the different types of target predictor variables, we divide the task of supervised learning into two categories: Classification

Python Machine learning Library Keras--autoencoder encoding, feature compression __

Full Stack Engineer Development Manual (author: Shangpeng) Python Tutorial Full Solution Keras uses a depth network to achieve the encoding, that is, the n-dimensional characteristics of each sample, using K as a feature to achieve the function of coding compression. The feature selection function is also realized. For example, the handwriting contains 754 pixels, and it contains 754 features, if you want to represent them with two features. How do yo

Machine learning path: Python linear regression linearregression, stochastic parametric regression sgdregressor forecast Boston rates

(Ss_y.inverse_transform (y_test), Ss_y.inverse_transform (lr_y_predict)) $ Print("the mean square error of the linear is:", Lr_mse) -Lr_mae =Mean_absolute_error (Ss_y.inverse_transform (y_test), Ss_y.inverse_transform (lr_y_predict)) - Print("the average absolute error of the linear is:", Lr_mae) - A #evaluation of the SGD model +Sgdr_score =Sgdr.score (x_test, y_test) the Print("the default evaluation value for SGD is:", Sgdr_score) -sgdr_r_squared =R2_score (y_test, sgdr_y_predict) $ Print("

Machine learning path: Python regression tree decisiontreeregressor forecast Boston Rates

regression tree is:", Dtr.score (X_test, y_test)) - Print("the r_squared values for the flat regression tree are:", R2_score (Y_test, dtr_y_predict)) - Print("the mean square error of the regression tree is:", Mean_squared_error (Ss_y.inverse_transform (y_test), - Ss_y.inverse_transform (dtr_y_predict))) A Print("the average absolute error of the regression tree is:", Mean_absolute_error (Ss_y.inverse_transform (y_test), + Ss_y.inverse_transform (dtr_y_predict))) the - " " $ the default evalua

The path of machine learning: Python polynomial feature generation polynomialfeatures and over-fitting

.score (X_train_poly2, Y_train))#0.9816421639597427Two-time linear regression model fitted curves:The fitting degree is better than 1 linear fitting.The following 4 linear regression models are performed:1 #four-time linear regression model fitting2Poly4 = Polynomialfeatures (degree=4)#4-time polynomial feature generator3X_train_poly4 =poly4.fit_transform (X_train)4 #Building Model Predictions5Regressor_poly4 =linearregression ()6 Regressor_poly4.fit (X_train_poly4, Y_train)7 #draw a graph of 2

Machine learning Path: Python practice lifting Tree xgboost classifier

training sample Ax = titanic[["Pclass"," Age","Sex"]] aty = titanic["survived"] - #The average complement of the acquired age space -x[" Age"].fillna (x[" Age"].mean (), inplace=True) - - #split training data and test data -X_train, X_test, y_train, y_test =train_test_split (x, in y, -test_size=0.25, toRandom_state=33) + #extracting dictionary features for vectorization -VEC =Dictvectorizer () theX_train = Vec.fit_transform (X_train.to_dict (orient="Record")) *X_test = Vec.transform (X_test.to

Machine learning path: Python linear regression overfitting L1 and L2 regularization

= Polynomialfeatures (degree=4)#4-time polynomial feature generator -X_train_poly4 =poly4.fit_transform (X_train) Wu #Building Model Predictions -Regressor_poly4 =linearregression () About Regressor_poly4.fit (X_train_poly4, Y_train) $X_test_poly4 =poly4.transform (x_test) - Print("four-time linear model prediction score:", Regressor_poly4.score (X_test_poly4, Y_test))#0.8095880795746723 - - #learning and predicting using L1 norm regularization line

Machine learning Path: The Python decision tree classification predicts whether the Titanic passengers survived

AboutDTC =Decisiontreeclassifier () $ #Training - Dtc.fit (X_train, Y_train) - #Predicting saved results -Y_predict =dtc.predict (x_test) A + " " the 4 Model Evaluation - " " $ Print("accuracy:", Dtc.score (X_test, y_test)) the Print("Other indicators: \ n", Classification_report (Y_predict, Y_test, target_names=['died','survived'])) the " " the accuracy: 0.7811550151975684 the Other indicators: - Precision recall F1-score support in the died 0.91 0.78 0.84 236 the survived 0.58 0.80 0.67 Abo

Machine learning Path: Python comprehensive classifier random forest classification gradient elevation decision tree classification Titanic survivor

", Classification_report (Gbc_y_predict, Y_test, target_names=['died','survived']))103 104 " " the Single decision tree accuracy: 0.7811550151975684106 Other indicators:107 Precision recall F1-score support108 109 died 0.91 0.78 0.84 236 the survived 0.58 0.80 0.67111 the avg/total 0.81 0.78 0.79 329113 the Random forest accuracy: 0.78419452887538 the Other indicators: the Precision recall F1-score support117 118 died 0.91 0.78 0.84 237119 survived 0.58 0.80 0.68 - 121 avg/total 0.82 0.78 0.79

The path of machine learning: Python practice Word2vec word vector technology

-za-z]"," ", Sent.lower (). Strip ()). Split () in sentences.append (temp) - to returnsentences + - #The sentences in the long news are stripped out for training . thesentences = [] * forIinchx: $Sentence_list =news_to_sentences (i)Panax NotoginsengSentences + =sentence_list - the + #Configure the dimension of the word vector ANum_features = 300 the #the frequency of the words that are to be considered +Min_word_count = 20 - #number of CPU cores used in parallel computing $Num_workers =

Total Pages: 14 1 .... 10 11 12 13 14 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.