Learn about andrew ng stanford machine learning, we have the largest and most updated andrew ng stanford machine learning information on alibabacloud.com
Stanford University machine Learning lesson 10 "Neural Networks: Learning" study notes. This course consists of seven parts:
1) Deciding what to try next (decide what to do next)
2) Evaluating a hypothesis (Evaluation hypothesis)
3) Model selection and training/validation/test sets (Model selection and training/verific
Original handout of Stanford Machine Learning Course
This resource is the original handout of the Stanford machine learning course, which is AndrewNg said that a total of 20 PDF files cover some important models, algorithms, and
Public Course address:Https://class.coursera.org/ml-003/class/index
INSTRUCTOR:Andrew Ng 1. Learning with large datasets (
Big Data Learning
)
The importance of data volume has been mentioned in the previous lecture on machine learning design. Remember this sentence:
findF1scoreThe algorithm with the largest value. 5. Data for Machine Learning (
Machine Learning data
)
In machine learning, many methods can be used to predict the problem. Generally, when the data size increases, the accura
training set is appropriate.3. No supervised learningExample: In the case of the tumour above, the point in the figure does not know the correct answer, but is from you to find a certain structure, that is, clustering .Applied in the fields of biological genetic engineering, image processing, computer vision, etc.Example: Cocktail party issuesPick up the sounds you're interested in during a noisy cocktail partyUse two different positions to separate the sound from different positionscan also be
the value is, the closer the value of the evaluation function is to the midline position of the parabolic curve, that is, the closer it is to the minimum value. It can be represented by an example:
Let's take a look at the meaning. When the value is too small, the update is slow, and the gradient descent algorithm will slow down in execution. When the value is too large, the gradient descent algorithm may exceed the target value (minimum value), leading to non-convergence, even divergence. As
Original: http://blog.csdn.net/abcjennifer/article/details/7797502This column (machine learning) includes linear regression with single parameters, linear regression with multiple parameters, Octave Tutorial, Logistic Regression, regularization, neural network, design of the computer learning system, SVM (Support vector machines), clustering, dimensionality reduc
7 machine learning System Design
Content
7 Machine Learning System Design
7.1 Prioritizing
7.2 Error Analysis
7.3 Error Metrics for skewed classed
7.3.1 Precision/recall
7.3.2 Trading off precision and RECALL:F1 score
7.4 Data for machine
An introductory tutorial on machine learning with a higher degree of identity, by Andrew Ng of Stanford. NetEase public class with Chinese and English subtitles teaching video resources (http://open.163.com/special/opencourse/ machinelearning.html), handout stamp here: http:
The last three weeks of Andrew Ng's machine learning were recently followed by the linear regression (Linear Regression) and logistic regression (logistic Regression) models in machines learning. Make a note here.Also recommended a statistical study of the book, "Statistical Learni
We will learn how to systematically improve machine learning algorithms, tell you when the algorithm is not doing well, and describe how to ' debug ' your learning algorithms and improve their performance "best practices". To optimize machine learning algorithms, you need to
If we are developing a machine learning system and want to try to improve the performance of a machine learning system, how do we decide which path we should choose Next?In order to explain this problem, to predict the price of learning examples. If we've got the
afternoon, just finish the first four lessons, listen to Andrew Ng to finish the related content of GLM generalized linear model. It's really a feeling brief encounter. I would like to recommend this course to all the students who see this article (although it's 07).Three elements of machine learningThe three elements of mac
assumptions tend to be 0, but the actual labels are 1, both of which indicate a miscarriage of judgment. Otherwise, we define the error value as 0, at which point the value is assumed to correctly classify the sample Y.Then, we can use the error rate errors to define the test error, that is, 1/mtest times the error rate errors of H (i) (xtest) and Y (i) (sum from I=1 to Mtest).Stanford University public Class mac
symmetric semi-definite matrixin the case where the data is non-linear:called L1 norm soft margin SVM. is a convex optimization problem. It allows an interval of less than 1, which allows for the categorization of errors. SMO algorithm:coordinate ascent algorithm:This algorithm has more iterations, but at some point the inner loop will be very fast if a parameter in W (A1,,, am) is very small at the cost of finding the optimal value. SMO:If only one α is solved as SVM, the other α is fixed. obt
be trained and predicted immediately, which is called Online learning. each of the previously learned models can do online learning, but given the real-time nature, not every model can be updated in a short time and the next prediction, and the perceptron algorithm is well suited to do online learning:The parameter Update method is: if hθ (x) = y is accurate, the parameter is not updated otherwise, θ:=θ+ y
Public Course address:Https://class.coursera.org/ml-003/class/index
INSTRUCTOR:Andrew Ng 1. deciding what to try next (
Determine what to do next
)
I have already introduced some machine learning methods. It is obviously not enough to know the specific process of these methods. The key is to learn how to use them. The so-called best way to master knowledge
To draw a full stop to the first four sessions of the course, here are two of the models that were mentioned in the first four lectures by Andrew the Great God.The Perceptron Learning Algorithm Sensing machineModel:From the model, the Perceptron is very similar to the logistic regression, except that the G function of logistic regression is a logical function (also called the sigmoid function), which is a c
classification model, which gives us a better evaluation value and gives us a more direct way to evaluate the good and bad of the model. One last thing to keep in mind, in the definition of precision and recall, we define precision and recall rates, and we habitually use Y=1 to show that this class appears very little. So if we try to detect a very rare situation, like cancer. I hope it's a rare situation where precision and recall are defined as Y=1 rather than y=0, as some of the fewer classe
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.