andrew ng stanford machine learning

Learn about andrew ng stanford machine learning, we have the largest and most updated andrew ng stanford machine learning information on alibabacloud.com

Stanford University public Class machine learning: Advice for applying machines learning | Learning curves (Improved learning algorithm: the relationship between high and high variance and learning curve)

to the right in this image. We can generally see the two learning curves, the two curves of blue and red are approaching each other. Therefore, if we extend the curve to the right, it seems that the training set error is likely to increase gradually. The cross-validation set error will continue to decline. Of course, we are most concerned with cross-validation set errors or test set errors. So from this picture, we can basically predict that if we co

Stanford Machine Learning---seventh lecture. Machine Learning System Design

Original: http://blog.csdn.net/abcjennifer/article/details/7834256This column (machine learning) includes linear regression with single parameters, linear regression with multiple parameters, Octave Tutorial, Logistic Regression, regularization, neural network, design of the computer learning system, SVM (Support vector machines), clustering, dimensionality reduc

One of the Stanford machine Learning implementations and analyses (foreword)

Since the end of last year to learn Andrew Ng's machine learning public class, in accordance with its courseware to try to achieve some of the algorithm to deepen understanding, but in this process encountered some problems, or for the implementation of the program, or to understand the algorithm. So prepare to organize this course and document your understanding

Stanford University Machine Learning public Class (II): Supervised learning application and gradient descent

mathematical expression was unfolded using Taylor's formula, and looked a bit ugly, so we compared the Taylor expansion in the case of a one-dimensional argument.You know what's going on with the Taylor expansion in multidimensional situations.in the [1] type, the higher order infinitesimal can be ignored, so the [1] type is taken to the minimum value,should maketake the minimum-this is the dot product (quantity product) of two vectors, and in what case is the value minimal? look at the two vec

Resources | From Stanford CS229, the machine learning memorandum was assembled

On Github, Afshinea contributed a memo to the classic Stanford CS229 Course, which included supervised learning, unsupervised learning, and knowledge of probability and statistics, linear algebra, and calculus for further studies. Project Address: https://github.com/afshinea/stanford-cs-229-

Machine Learning-Stanford: Learning note 7-optimal interval classifier problem

. Optimal interval classifierThe optimal interval classifier can be regarded as the predecessor of the support vector machine, and is a learning algorithm, which chooses the specific W and b to maximize the geometrical interval. The optimal classification interval is an optimization problem such as the following:That is, select Γ,w,b to maximize gamma, while satisfying the condition: the maximum geometry in

Stanford CS229 Machine Learning course Note II: GLM Generalized linear model and logistic regression

is more than one, the Newton method iterates over the rule:Newton's method usually has a faster convergence rate than the batch gradient, and it takes a much smaller number of iterations to get close to the minimum value. However, when the parameters of the model are many (n), the computational cost of the Hessian matrix will be large, resulting in a slower convergence rate, but when the number of arguments is not long, the Newton method is usually much faster than the gradient descent.Summariz

Machine Learning-Stanford: Learning Note 5-generating learning algorithms

unreasonable. That is, in the past two months the word has not appeared in the mail, it is considered that the probability of 0, unreasonable.Generally speaking, it is unreasonable to think that these events will not happen if they have not been seen before . Solve this problem with Laplace smoothing.4. Laplace SmoothingAccording to the maximum likelihood estimate, p (y=1) = # "1" s/(# "0" s + # "1" s), that is, the probability of Y being 1 is the ratio of the number of 1 in the sample to all s

Stanford Machine Learning Open Course Notes (6)-Neural Network Learning

Public Course address:Https://class.coursera.org/ml-003/class/index INSTRUCTOR:Andrew Ng 1. Cost Function ( Cost functions ) The last lecture introduced the multiclass classification problem. The difference between the multiclass classification problem and the binary classification problem lies in that there are multiple output units, which are summarized as follows: At the same time, we also know the price functions of Logistic regress

Stanford 17th Lesson: Mass Machine learning (Large scale machines learning)

17.1 Study of large data sets17.2 Random Gradient Descent method17.3 Miniature Batch Gradient descent17.4 Stochastic gradient descent convergence17.5 Online Learning17.6 mapping simplification and data parallelism 17.1 Learning from large data sets 17.2random Gradient Descent method 17.3miniature Batch gradient descent 17.4stochastic gradient descent convergence 17.5Online Learning

Stanford machine learning lab 1

It is decided that machine learning is under system learning, and Stanford courseware is the main line. Notes1 is part of the http://www.stanford.edu/class/cs229/notes/cs229-notes1.pdf about Regression 1. Linear Regression For example, if the House Price is predicted and the data cannot be found on the Internet, use

Stanford Machine Learning---third speaking. The solution of logistic regression and overfitting problem logistic Regression & regularization

invoking the example in MATLAB above, we can define the cost function of the logistic regression as follows:In the figure, Jval represents the cost function expression, where the last item is the penalty for the parameter θ; The following is a gradient of the derivation of each θj, where θ0 is not in the penalty, so gradient is not changed, and Θ1~θn has one more (λ/m) *θj respectively;At this point, regularization can solve the linear and logistic overfitting regression problem ~

(note) Stanford machine Learning--generating learning algorithms

two classification problem, so the model is modeled as Bernoulli distributionIn the case of a given Y, naive Bayes assumes that each word appears to be independent of each other, and that each word appears to be a two classification problem, that is, it is also modeled as a Bernoulli distribution.In the GDA model, it is assumed that we are still dealing with a two classification problem, and that the models are still modeled as Bernoulli distributions.In the case of a given y, the value of x is

Stanford Machine Learning Open Course Notes (15th)-[application] photo OCR technology

calculates the accuracy of the entire system at this time: As shown in, text recognition consists of four parts. Now we can find the system accuracy after optimization for each part. The question is, how can we improve the accuracy of the entire system? We can see from the table that, if we have optimized the text moderation part, the accuracy will be72%Add89%If we optimize the character segmentation, the accuracy is only from89%To90%If character recognition is optimized90%To100%In contr

Stanford University public Class machine learning: Machines Learning System Design | Trading off precision and recall (F score formula: How to balance (trade-off) precision and recall values in a learning algorithm)

take an average of this evaluation mode.It is a useful algorithm to use the F-score algorithm to evaluate both precision and recall rates . The PR of the molecule determines that the precision ratio (P) and recall (R) must be large at the same time to ensure that the F score values are larger. If the precision ratio or recall rate is very low, close to 0, the direct result of the PR value is very low, approaching 0, that is, F score is also very low.At this point we compare three algorithms, we

Generative learning algorithm Stanford machine learning notes

distribution with the mean value of μ 0 and the covariance matrix of Σ, X | y = 1 follows the multivariate Gaussian distribution where the mean value is μ1 and the covariance matrix is Σ (This will be discussed later ). The log function for maximum likelihood estimation is recorded as L (ø, μ 0, μ 1, Σ) = Log 1_mi = 1 p (x (I) | Y (I); μ 0, μ 1, Σ) P (Y (I); ø), our goal is to obtain the parameter ø, μ 0, μ 1, Σ to make L (ø, μ 0, 1, Σ) to obtain the maximum value. The values of the four para

Machine Learning-Stanford: Learning note 6-Naive Bayes

hyper-plane (w,b) and the entire training set is defined as:Similar to the function interval, take the smallest geometric interval in the sample.The maximum interval classifier can be regarded as the predecessor of the support vector machine, and is a learning algorithm, which chooses the specific W and b to maximize the geometrical interval. The maximum classification interval is an optimization problem s

Stanford University-machine learning public class-2. Supervised learning applications • Gradient descent

be able to find the global optimal solution.When the training sample is very large, each update parameter needs to traverse all the sample calculation total error, so that the learning speed is too slow; this time the random gradient descent algorithm that calculates the error update parameters of a sample is usually more thanThe batch gradient descent method is faster. (Theoretically, there is no guarantee that the random gradient descent can conver

Stanford "Machine learning" lesson1-3 impressions-------3, linear regression two

based on the minimum mean variance. The closer to the predicted point, the heavier the weight, which is to use the points near the check to give higher weights. The most common is the Gaussian nucleus. The weights corresponding to the Gaussian nuclei are as follows:In (Formula 2), the only thing we need to make sure is that it's a user-specified parameter that determines how much weight is given to nearby points.Therefore, as shown in (Equation 3), local weighted linear regression is a non-para

Stanford Machine Learning Open Course Notes (12)-exception detection

does not introduce a matrix, which is easy to calculate and can be correctly executed if there are few samples. The multi-element model is complex to calculate after the matrix is introduced. to calculate the inverse of the matrix, the model must be executed when the sample value is greater than the feature value. ------------------------------------------Weak split line---------------------------------------------- Although exception detection is mentioned in this article, it is used to in

Total Pages: 6 1 2 3 4 5 6 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.