andrew ng stanford machine learning

Learn about andrew ng stanford machine learning, we have the largest and most updated andrew ng stanford machine learning information on alibabacloud.com

Stanford "Machine Learning" Lesson7 thoughts ——— 1, the best interval classifier

equal to 0.3. Optimal interval classifierThe optimal interval classifier can be defined asSo set its limit toSo its LaGrand day operator isThe derivation of its factors is obtained by:ObtainedIt is possible to differentiate its factor B by:The (9) type (8) can beAnd then by the (10) type of generationSo the dual optimization problem can be expressed as:The problem of dual optimization can be obtained, so that the Jiewei of B can be obtained by (9).For a new data point x, you can make prediction

Stanford Machine Learning Note-9. Clustering (clustering)

9. Clustering Content 9. Clustering 9.1 Supervised learning and unsupervised learning 9.2 K-means algorithm 9.3 Optimization Objective 9.4 Random Initialization 9.5 Choosing the number of Clusters 9.1 Supervised learning and unsupervised learningWe have learned many machine

Stanford Coursera Machine Learning Programming Job Exercise 5 (regularization of linear regression and deviations and variances)

different lambda, the calculated training error and cross-validation error are as follows:Lambda Train error Validation error 0.000000 0.173616 22.066602 0.001000 0.156653 18.597638 0.003000 0.190298 19.981503 0.010000 0.221975 16.969087 0.030000 0.281852 12.829003 0.100000 0.459318 7.587013 0.300000 0.921760 1.000000 2.076188 4.260625 3.000000 4.901351 3.822907 10.000000 16.092213 9.945508The graphic is represented as follows:As

Stanford machine learning-lecture 1. Linear Regression with one variable

This topic (Machine Learning) including Single-parameter linear regression, multi-parameter linear regression, Octave tutorial, logistic regression, regularization, neural network, machine learning system design, SVM (Support Vector Machines support vector machine), clusteri

Stanford Machine Learning Week 1-single variable linear regression

found by gradient descent: '); fprintf ('%f%f \ n ', theta (1), Theta (2));% Plot the Lin Ear fithold on; % Keep previous plot visibleplot (X (:, 2), X*theta, '-') Legend (' Training data ', ' Linear regression ') hold off% don ' t overlay Any more plots on the figure% Predict values for population sizes of 35,000 and 70,000predict1 = [1, 3.5] *theta;fprintf (' for population = 35,000, we predict a profit of%f\n ',... predict1*10000);p redict2 = [1, 7] * theta;fprintf (' for population = 70

Ng Lesson 17th: Mass machine learning (Large scale machines learning)

17.1 Study of large data sets17.2 Random Gradient descent method17.3 Miniature Batch gradient descent17.4 Stochastic gradient descent convergence17.5 Online Learning17.6 mapping Simplification and data parallelism 17.1 Study of large data sets 17.2 Stochastic gradient descent method 17.3miniature Batch gradient descent 17.4 stochastic gradient descent convergence 17.5 Online learning 17.6 mapping simplification and data parallelism

Open Course Notes for Stanford Machine Learning (I)-linear regression with single variables

Public Course address:Https://class.coursera.org/ml-003/class/index INSTRUCTOR:Andrew Ng 1. Model Representation ( Model Creation ) Consider a question: what if we want to predict the price of a house in a given area based on the house price and area data? In fact, this is a linear regression problem. The given data is used as a training sample to train it to get a model that represents the relationship between price and area (actually a functi

Stanford University Machine Learning-note2

mean vector for the above image is: 1.2 Gaussian discriminant analysis model When we have such a classification problem, its input characteristics are continuous random variables. Then we can apply Gaussian discriminant analysis (GDA): Use a multivariate Gaussian distribution to model P (x|y), as follows: The distributions are written like this: Here, the parameters of our model are φ,σ,μ0 and μ1 (note that there are 2 different mean vectors, but only one covariance matrix). Its logarithmic

Stanford Machine Learning Implementation and Analysis II (linear regression)

process is constantly close to the optimal solution. Because the green squares overlap too much in the diagram, the middle part of the drawing appears black, and the image on the right is the result of local amplification.Algorithm analysis 1. In the gradient descent method,the batchsize is thenumber of samples used for one iteration, and when it is M, it is the batch gradient descent, which is the random gradient drop at 1 o'clock. The experimental results show that the larger the batchs

NG Machine Learning Video notes (11) Theory of--k-mean value algorithm

NG Machine Learning Video notes (11)--k - means algorithm theory(Reproduced please attach this article link--linhxx)I. OverviewK-Means (K-means) algorithm, is a unsupervised learning (unsupervised learning) algorithm, its core is clustering (clustering), that is, a set of in

NG Lesson 11th: Design of machine learning systems (machines learning system designs)

11.1 What to do first11.2 Error AnalysisError measurement for class 11.3 skew11.4 The tradeoff between recall and precision11.5 Machine-Learning data11.1 what to do firstThe next video will talk about the design of the machine learning system. These videos will talk about the major problems you will encounter when desi

Machine Learning-Overview of common matlab programming commands (NG-ml-class octave/MATLAB tutorial)

Machine Learning-Overview of common matlab programming commands -- Summary from ng-ml-class octave/MATLAB tutorial CourseraA. basic operations and moving data around1 in command line mode, you can use Shift + press enter to append the next line to output 2 length command to apply to the matrix, and return a higher one-dimensional dimension3 help + command is the

NG Machine Learning Video Notes (ii)--gradient descent algorithm interpretation and solving θ

NG Machine Learning Video notes (ii)--Gradient descent algorithm interpretation and solving θ (Reproduced please attach this article link--linhxx) First, the interpretation gradient algorithmA gradient algorithm formula and a simplified cost function diagram, as shown in.1) Partial derivativeBy the know, at point A, its partial derivative is less than 0, so θ min

Total Pages: 6 1 2 3 4 5 6 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.