Alibabacloud.com offers a wide variety of articles about best machine learning book, easily find your best machine learning book information here online.
1. Vector Norm
Norm, Norm, is a concept similar to "Length" in mathematics, which is actually a kind of function.The regularization (regularization) and sparse coding (Sparse coding) in machine learning are very interesting applications.For Vector a∈rn A\in r^n, its LP norm is | | a| | p= (∑IN|AI|P) 1p (1) | | a| | _p= (\sum_i^n |a_i|^p) ^{\frac 1 p} \tag 1Commonly used are:
L0 NormThe number of elements i
Cross entropy cost function 1. Cross-entropy theory
Cross entropy is relative to entropy, as covariance and variance.
Entropy examines the expectation of a single information (distribution):
H (p) =−∑I=1NP (xi) Logp (xi)
Cross-Entropy examines the expectations of two of information (distributions):H (P,Q) =−∑I=1NP (xi) logq (xi)For details, please see Wiki Cross entropy
y = Tf.placeholder (Dtype=tf.float32, Shape=[none, ten]) ...
Scores = Tf.matmul (H, W) + b
probs = Tf.nn.softmax (scores)
l
The last three weeks of Andrew Ng's machine learning were recently followed by the linear regression (Linear Regression) and logistic regression (logistic Regression) models in machines learning. Make a note here.Also recommended a statistical study of the book, "Statistical Learni
The concept of extreme learning machineElm is a new fast learning algorithm, for TOW layer neural network, elm can randomly initialize input weights and biases and get corresponding output weights.For a single-hidden-layer neural network, suppose there are n arbitrary samples, where。 For a single hidden layer neural network with a hidden layer node, it can be expressed asWhere, for the activation function,
In the introduction of recommendation system, we give the general framework of recommendation system. Obviously, the recommendation method is the most core and key part of the whole recommendation system, which determines the performance of the recommended system to a large extent. At present, the main recommended methods include: Based on content recommendation, collaborative filtering recommendation, recommendation based on association rules, based on utility recommendation, based on knowledge
Earlier, we mentioned supervised learning, which corresponds to non-supervised learning in machine learning. The problem with unsupervised learning is that in untagged data, you try to find a hidden structure. Because the examples provided to learners arenot marked, so there
similar to LWLR, the formula is described in "machine learning combat". The formula adds a coefficient that we set ourselves, and we take 30 different values to see the change of W.STEP5:Ridge return:#岭回归def ridgeregression (data, L): Xmat = Mat (data) Ymat = Mat (l). T Ymean = mean (Ymat, 0) Ymat = Ymat-ymean Xmean = mean (Xmat, 0) v = var (xmat) Xmat = (Xmat-xmean) /V #取30次不同lam岭回
) for in H: Print(i) for in H.flat: print(i)iterating over a multidimensional array is the first axis :if to perform operations on the elements in each array, we can use the flat property, which is an iterator to the array element :Np.flatten () returns an array that is collapsed into one dimension. However, the function can only be applied to the NumPy object, that is , an array or mat, the normal List of lists is not possible. A = Np.array ([[Up], [3, 4], [5, 6]])print(A.flatten
-centralsonatype-oss-snapshots3.1 Production messagesObjectStreamingproducer {DefMain (args:array[String]) {Val random =NewRandom ()Maximum number of events per secondValMaxevents =6Read the list of possible namesVal Namesresource =This.getClass.getResourceAsStream ("/names.csv")Val names = Scala.io.Source.frominputstream (Namesresource). Getlines (). ToList. Head Split (","). ToseqGenerate a sequence of possible productsVal products =Seq ("IPhone Cover"9.99,"Headphones"5.49,"Samsung Galaxy Cove
Vi. more hyper-parameters in grid search and K-nearest algorithmVii. Normalization of data Feature ScalingSolution: Map all data to the same scaleViii. the Scaler in Scikit-learnpreprocessing.pyImportNumPy as NPclassStandardscaler:def __init__(self): Self.mean_=None Self.scale_=NonedefFit (self, X):"""get the mean and variance of the data based on the training data set X""" assertX.ndim = = 2,"The dimension of X must be 2"Self.mean_= Np.array ([Np.mean (X[:,i]) forIinchRange (x.shape[1]))
1. The complete course of statistics all of statistics Carnegie Kimelon Wosseman
2. Fourth edition, "Probability Theory and Mathematical Statistics" Morris. Heidegger, Morris H.degroot, and Mark. Schevish (Mark j.shervish)
3. Introduction to Linear algebra, Gilbert. Strong--Online video tutorials are classic
4. "Numerical linear algebra", Tracy Füssen. Lloyd and David. Bao
Textbooks suitable for undergraduates
5. Predictive data analysis of machine
Analytical:Two categories: Each classifier can only divide the samples into two categories. The prison samples were warders, thieves, food-delivery officers, and others. Two classifications certainly won't work. Vapnik 95 proposed to the basis of the support vector machine is a two classification classifier, this classifier learning process is to solve a positive and negative two classification derived fro
Recommended for Android development books: From Getting started to mastering the series Learning Route book IntroductionTransferred from: http://blog.csdn.net/findsafety/article/details/52317506Many times we will continue to receive questions from beginners, "What are the classic introductory materials and learning routes for Android?" "," What are the recommenda
Nonlinear Transformation (nonlinear conversion)
ReviewIn the 11th lecture, we introduce how to deal with two classification problems through logistic regression, and how to solve multiple classification problems by Ova/ovo decomposition.
Quadratic hypothesesThe two-time hypothetical space linear hypothetical space is extremely flawed:
So far, the machine learning model we have introduced is linear model,
Reading guide
Qt is a cross-platform application and UI framework that can be used to write applications that are deployed across different desktops and embedded operating systems without having to rewrite the source code. Since the release of Qt 4.5, with Nokia continually developing more and more beloved product and experience strategic concepts, the QT product family continues to add new initiatives, new licensing options and new features to make Qt more open, easier and more convenient than
Becoming a Senior Programmer proficient in Linux programming has always been the goal of many friends. According to statistics from chinacache, the monthly salary of Linux programmers in Beijing is 1.8 times that of Windows programmers, 2.6 times that of Java programmers, and 2.9 times that of Windows programmers. At the same time, the data shows that with the increase of work experience, the income gap between Linux programmers and Windows programmers is also expanding. Denis believes that the
Reprint Please specify source: http://www.cnblogs.com/ymingjingr/p/4271742.htmlDirectory machine Learning Cornerstone Note When you can use machine learning (1) Machine learning Cornerstone Note 2--When you can use
Bayesian Introduction Bayesian learning Method characteristic Bayes rule maximum hypothesis example basic probability formula table
Machine learning learning speed is not fast enough, but hope to learn more down-to-earth. After all, although it is it but more biased in mathematics, so to learn the rigorous and thoroug
Reprint Please specify source: http://www.cnblogs.com/ymingjingr/p/4271742.htmlDirectory machine Learning Cornerstone Note When you can use machine learning (1) Machine learning Cornerstone Note 2--When you can use
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.