Stanford University machine Learning lesson 10 "Neural Networks: Learning" study notes. This course consists of seven parts:
1) Deciding what to try next (decide what to do next)
2) Evaluating a hypothesis (Evaluation hypothesis)
3) Model selection and training/validation/test sets (Model selection and training/verification/test Set)
4) Diagnosing bias vs. varian
-Dimensional Datasets
Spider-a complete object-oriented environment for Matlab machine learning.
Libsvm-library of SVM
Liblinear-Large Linear Classification Library
Machine Learning Module-Professor M. A. girolami's machine learning
-Professor M. A. girolami's machine learning courses, including PDF, handouts, and code.
Caffe-a deep learning framework that considers code cleansing, readability, and speed
Pattern Recognition toolbox-Pattern Recognition toolkit in MATLAB, fully object-oriented
Data analysis/Data Visualization
MATLAB package for
Original: http://blog.csdn.net/abcjennifer/article/details/7797502This column (machine learning) includes linear regression with single parameters, linear regression with multiple parameters, Octave Tutorial, Logistic Regression, regularization, neural network, design of the computer learning system, SVM (Support vector machines), clustering, dimensionality reduc
What are two models?
We have come to these two concepts from a few words:1, machine learning is divided into supervised machine learning and unsupervised machine learning;2, supervised machine
Machine learning is a comprehensive and applied discipline that can be used to solve problems in various fields such as computer vision/biology/robotics and everyday languages, as a result of research on artificial intelligence, and machine learning is designed to enable computers to have the ability to learn as humans
7 machine learning System Design
Content
7 Machine Learning System Design
7.1 Prioritizing
7.2 Error Analysis
7.3 Error Metrics for skewed classed
7.3.1 Precision/recall
7.3.2 Trading off precision and RECALL:F1 score
7.4 Data for machine
As an article of the College (http://xxwenda.com/article/584), the follow-up preparation is to be tested individually. Of course, there have been many tests.
Apache Spark itself1.MLlibAmplabSpark was originally born in the Berkeley Amplab Laboratory and is still a Amplab project, though not in the Apache Spark Foundation, but still has a considerable place in your daily GitHub program.ML BaseThe mllib of the spark itself is at the bottom of the three-layer ML base, MLI is in the middle layer, a
Simple examples are used to understand what machine learning is, and examples are used to understand machine learning.
1. What is machine learning?
What is machine
Original: http://blog.csdn.net/abcjennifer/article/details/7834256This column (machine learning) includes linear regression with single parameters, linear regression with multiple parameters, Octave Tutorial, Logistic Regression, regularization, neural network, design of the computer learning system, SVM (Support vector machines), clustering, dimensionality reduc
Original handout of Stanford Machine Learning Course
This resource is the original handout of the Stanford machine learning course, which is AndrewNg said that a total of 20 PDF files cover some important models, algorithms, and concepts in machine
imagenet by deep learning, and the deep learning model, represented by CNN, is now a bit exaggerated, borrowed from the Chinese University of Hong Kong Prof. Xiaogang Wang Teacher's summary article, Deep learning is nothing more than the traditional machine feature learning
MATLAB machine learning did not see what tutorial, only a series of functions, had to record:Matlab Each machine learning method is implemented in many ways, and can be advanced configuration (such as the training decision tree when the various parameters set), here due to space limitations, no longer described in deta
WEEK1:Machine learning:
A computer program was said to learn from experience E with respect to some class of tasks T and performance measure P, if Its performance on tasks in T, as measured by P, improves with experience E.
Supervised learning:we already know what we correct output should look like.
Regression:try to map input variables to some continuous function.
some time ago on the Internet to see the Coursera Open Classroom Big Machine learning Cornerstone Course, more comprehensive and clear machine learning needs of the basic knowledge, theoretical basis to explain. There are several more important concepts and ideas in foundation, first review, and then open the follow-up
"Machine learning" Matlab 2015a self-machine learning algorithm RollupAuthor: Chen Fa St.
"Introduction"Today suddenly found that the version of matlab2015a with a lot of classical machine learning methods, simple and easy to use,
to the right in this image. We can generally see the two learning curves, the two curves of blue and red are approaching each other. Therefore, if we extend the curve to the right, it seems that the training set error is likely to increase gradually. The cross-validation set error will continue to decline. Of course, we are most concerned with cross-validation set errors or test set errors. So from this picture, we can basically predict that if we co
1.1 machine learning basics-python deep machine learning, 1.1-python
Refer to instructor Peng Liang's video tutorial: reprinted, please indicate the source and original instructor Peng Liang
Video tutorial: http://pan.baidu.com/s/1kVNe5EJ
1. course Introduction
2. Machine
ProfileThis article is the first of a small experiment in machine learning using the Python programming language. The main contents are as follows:
Read data and clean data
Explore the characteristics of the input data
Analyze how data is presented for learning algorithms
Choosing the right model and
Application Recommendations for machine learningFor a long time, the machine learning notes have not been updated, the last part of the updated neural network. This time we'll talk about the application of machine learning recommendations.Decide what to do nextSuppose we nee
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.