July online April machine learning algorithm class notes--no.1
Objective
Machine learning is a multidisciplinary interdisciplinary, including probability theory, statistics, convex analysis, feature engineering and so on. Recently followed the July algorithm to learn the knowledge of
Original address: http://blog.csdn.net/lrs1353281004/article/details/79529818
Sorting out the machine learning-algorithm engineers need to master the basic knowledge of machine learning, and attached to the internet I think that write a better blog address for reference. (Continuous update)
1. What is machine learningMachine learning is the conversion of unordered data into useful information.The main task of machine learning is to classify and another task is to return.Supervised learning: It is called supervised learning
Public Course address:Https://class.coursera.org/ml-003/class/index
INSTRUCTOR:Andrew Ng 1. Learning with large datasets (
Big Data Learning
)
The importance of data volume has been mentioned in the previous lecture on machine learning design. Remember this sentence:
It is not who has the best algorithm that w
I. BACKGROUND
In machine learning, there are 2 great ideas for supervised learning (supervised learning) and unsupervised learning (unsupervised learning)
Supervised learning, in layman
A probe into machine learning1. What is machine learningLearning refers to the skill that a person refines in the course of observing things, rather than learning, machine learning refers to the ability of a computer to gain some experience (i.e. a mathematical model) in a p
[Machine learning algorithm-python implementation] matrix denoising and normalization, python Machine Learning1. The background project is required. We plan to use python to implement matrix denoising and normalization. The numpy mathematical library does not find ideal functions. Therefore, I wrote a de-noise and normalization algorithm in the standard library,
Microsoft Azure cloud service introduces the machine learning module. Users only need to upload data and use some algorithm interfaces and R or other language interfaces provided by the machine learning module, you can use Microsoft Azure's powerful cloud computing capabilities to implement your
Bayesian Introduction Bayesian learning Method characteristic Bayes rule maximum hypothesis example basic probability formula table
Machine learning learning speed is not fast enough, but hope to learn more down-to-earth. After all, although it is it but more biased in mathematics, so to learn the rigorous and thoroug
The essential difference between classification and clustering in machine learning
There are two kinds of big problems in machine learning, one is classification, the other is clustering.In our life, we often do not have too much to distinguish between these two concepts, think clustering is classification, classificat
Machine Learning Summary (1), machine learning SummaryIntelligence:The word "intelligence" can be defined in many ways. Here we define it as being able to make the right decision based on certain situations. Knowledge is required to make a good decision, and this knowledge must be operable, for example, interpreting se
Https://github.com/josephmisiti/awesome-machine-learning#julia-nlp
Julia
General-purpose Machine Learning
Machinelearning-julia Machine Learning LibraryMlbase-a set of functions to support development of
This article focuses on the contents of the 1.2Python libraries and functions in the first chapter of the Python machine learning time Guide. Learn the workflow of machine Learning.I. Acquisition and inspection of dataRequests getting dataPandans processing Data1 ImportOS2 ImportPandas as PD3 ImportRequests4 5PATH = R'E:/python
in the process of learning rate can be seen as the length of the descent process, assuming that your step is very big can cross the valley directly on the opposite side of the mountain, it is difficult to get the local optimal solution. At this point, reducing the step size will increase your chances of going to the ground.2. About the cross fittingBy using the methods of drop out, batch normalization and data argument, the generalization ability of
Recently saw a relatively good machine learning course, roughly heard it again. The overall sense of machine learning field is still more difficult, although Li Hongyi teacher said is very good, not enough to absorb up or have a certain difficulty. Even though the process has been told, it is difficult to understand ho
What are machine learning?The definitions of machine learning is offered. Arthur Samuel described it as: "The field of study that gives computers the ability to learn without being explicitly prog Rammed. " This was an older, informal definition.Tom Mitchell provides a more modern definition: 'a computer program was sa
Recommended BooksHere is a list of books which I had read and feel it was worth recommending to friends who was interested in computer Scie nCE.Machine Learningpattern recognition and machine learningChristopher M. BishopA new treatment of classic machine learning topics, such as classification, regression, and time series analysis from a Ba Yesian perspective. I
1. What is machine learningMachine learning is the conversion of unordered data into useful information.The main task of machine learning is to classify and another task is to return.Supervised learning: It is called supervised learning
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.