"Pytorch" The four-play _ through Lenet pytorch Neural Network _# author:hellcat# Time:2018/2/11import Torch as Timport Torch.nn as Nnimport torch.nn.functional as Fclass LeNet (NN. Module): def __init__ (self): Super (Lenet,self). __init__ () Self.conv1 = nn. Conv2d (3, 6, 5) Self.conv2 = nn. conv2d (6,16,5) self.fc1 = nn. Linear (16*5*5,120) self.fc2 = nn. Linear (120,84) self.fc3 = nn. Linear (84,10) def
Python is a common tool for data processing, can handle the order of magnitude from a few k to several T data, with high development efficiency and maintainability, but also has a strong commonality and cross-platform, here for you to share a few good data analysis tools, the need for friends can refer to the next
Python is a common tool for data processing, which can handle data ranging from a few k to several T, with high development efficiency and maintainability, as well as a strong versati
://github.com/richliao/textClassifier (Keras)Https://github.com/ematvey/hierarchical-attention-networks (TensorFlow)Https://github.com/EdGENetworks/attention-networks-for-classification (Pytorch)I'm a split line.[5] Recurrent convolutional neural Networks for Text classificationSiwei Lai et al.Chinese Academy of SciencesAAAI 2015https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9745/9552This article presents a cyclic convolution neural net
, the bigger the money, the better.Power problem: A video card power is close to 300W, four graphics card recommended power over 1500W, in order to expand later, the selection of 1600W power.Chassis heat Dissipation:Because of the size of the various components, a large chassis with good thermal dissipation is required, and the TT Thermaltake Core V51 chassis is selected, with 3 12cm fans as standard. In the future, if necessary, water-cooled equipment can be installed.The above is the main hard
expressions in programming languages, when we want to match \ The time needs to match 4 \, \\\\ match \, because the first programming language will transfer \\\\ to \ \, and then the second time will be transferred \ \. If you use the native string r of Python to write the regular, you can write less two \, that is, R ' \ \ ' matches \,r ' \\d ' match ' \d ', R ' \d ' matches the numberUse of the 1.2 re module#first compile the regular expression into the pattern objectPattern = Re.Compile('
2.7 and 3.5 Two versions of Python were installed on the notebook, and failed to create process error occurred while installing Keras with the 3.5 version of PIP. Here's how to fix it:1. Since I have configured both 2.7 and 3.5 paths in the environment variable, I can execute python3 directly at the command line to start the 3.5 version of Python;2. Start the PIP via Python3, enter the python3-m pip install Keras
When I used the Keras visualization model, I met the above error with the following error message:
Traceback (most recent):
File "harrison_feature_model.py", line The solution is:
Pip install pydot-ng
pip install GraphvizAnd then it's solved, my system for Ubuntu 16.04
Or:
sudo pip3 install pydot
sudo pip3 install graphviz sudo apt-get install Graphviz
The solution below is also Ubuntu 16.04, but it's Python3
Reference Documents[1].
November 9, 2015 Google Open source of the artificial intelligence platform TensorFlow, but also become the 2015 's most popular open source projects. After 12 iterations from v0.1 to v0.12, Google released its version of TensorFlow 1.0 on February 15, 2017, and hosted the first TensorFlow Dev Summit conference in Mountain View, California, USA. TensorFlow 1.0 and Dev Summit (2017) Review
Compared with previous versions, the features of TensorFlow 1.0 are mainly reflected in the following aspect
), which has already appeared, 8. Summary
Two key issues:
1. Why has the memory function.
This is the problem solved in the RNN, because there is a recursive effect, the state of the hidden layer at the moment to participate in the calculation of this moment, the explicit point of the statement is the selection and decision-making reference to the last state.
2. Why lstm remember the long time.
Because the specially designed structure has the characteristics of CEC, error up a last state when
. We should use a multi-parameter and not less-than-fit network model. The tradeoff between too much capacity and too little capacity.Unfortunately, there is no effective rule or method to determine the size of the model parameters. You must constantly try to find the optimal parameter size on the validation set. a general approach to determining the size of a model: start with a relatively simple model, gradually increase or decrease the number of neurons or the number of network layers until t
Summary
In order to follow the in-depth study of the introductory, usually see the relevant sites and videos, here back up.
A comparison of 5 depth learning frameworks
Share a comparison video about the most popular 5 depth learning frameworks (Scikit Learn,tensorflow,theano,keras, and Caffe): http://weibo.com/p/ 23044464933dbb5463a1b0cef9ebcb4207b869. Iterate through each of the pros and cons, as well as some sample code, to make a definitive concl
. There is absolutely no need, and will cause the Spyder to start when the window, kernel died, and so on, this is my test, engaged a day ... "" When installing anaconda, do not install Python version 3.5, the total display GPU is not available. And do not install Spyder3 series, that is, more than Anaconda4.2.0. Instead, Python chooses 2.7,spyder to select the 2 series, which is the Anaconda4.1.1 version and below. What is the reason? Because Spyder3 always does not call the Ipythonw.exe interp
function, |a|>1, it means that the curve is getting smoother, Z-values tend to be closer to 1 or 0, which can also cause gradients to disappear.What if we can give a suitable value to W when we initialize the weights in each layer of the network, can we reduce the possibility of this gradient explosion or gradient disappearing? Let's see how to choose.One, random distribution weightsIn Keras, whose function is: k.random_uniform_variable (), let's tak
The problem is as follows:E:\project\dl\python\keras>python keras_sample.pyUsing Theano backend.Traceback (most recent):File "keras_sample.py", line 8, From Keras.preprocessing.image import ImagedatageneratorFile "D:\Program files\python_3.5\lib\site-packages\keras\preprocessing\image.py", line 9, From scipy import NdimageFile "D:\Program files\python_3.5\lib\site-packages\scipy\ndimage\__init__.py", line 1
Learning Goals
Understand multiple foundational papers of convolutional neural networks
Analyze the dimensionality reduction of a volume in a very deep network
Understand and Implement a residual network
Build a deep neural network using Keras
Implement a skip-connection in your network
Clone a repository from GitHub and use transfer learning
Learning Goalsunderstanding of multi-basis papers in convolutional neural ne
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.