convert pandas series to dataframe

Want to know convert pandas series to dataframe? we have a huge selection of convert pandas series to dataframe information on alibabacloud.com

Python pandas. Dataframe the best way to select and modify data. Loc,.iloc,.ix

Let's create a data frame by hand.[Python]View PlainCopy Import NumPy as NP Import Pandas as PD DF = PD. DataFrame (Np.arange (0,2). Reshape (3), columns=list (' abc ' ) DF is such a dropSo how do you choose the three ways to pick the data?One, when each column already has column name, with DF [' a '] can choose to take out a whole column of data. If you know column names and index

Python Pandas Dataframe operation

1. Create a dataframe from a dictionary>>>ImportPandas as PD>>> Dict1 = {'col1': [1,2,5,7],'col2':['a','b','C','D']}>>> DF =PD. DataFrame (Dict1)>>>DF col1 COL201a1 2b2 5C3 7 D2. Create Dataframe from multiple lists (convert the list to a dictionary, then convert the diction

Python pandas dataframe to redo functions

Today, I want to pandas in the row of the operation, looking for a long time to find the relevant functions First look at a small example From pandas import Series, dataframe data = Dataframe ({' K ': [1, 1, 2, 2]}) print data isduplicated = DATA.DUPL icated () pri

Dataframe Application of Pandas Library of Python data analysis

  This section describes the basic methods of data in series and Dataframe Re-index An important method of Pandas objects is reindex, which is to create a new object that adapts to the new index" "Created on 2016-8-10@author:xuzhengzhu" "" "Created on 2016-8-10@author:xuzhengzhu" " fromPandasImport*Print "--------------obj Result:-----------------"o

Python pandas. Dataframe selection and modification of data is best used. Loc,.iloc,.ix

I believe many people like me in the process of learning Python,pandas data selection and modification has a great deal of confusion (perhaps by the Matlab) impact ... To this day finally completely figure out ... Let's start with a data box manually. Import NumPy as NP import pandas as PD DF = PD. Dataframe (Np.arange (0,60,2). Reshape (10,3), columns=list (' a

Pandas Array (Pandas Series)-(5) Apply method Custom function

Sometimes you need to do some work on the values in the Pandas series , but without the built-in functions, you can write a function yourself, using the Pandas series 's apply method, You can call this function on each value inside, and then return a new SeriesImport= PD. Series

Use of the Pythonnet module to convert a DataTable into a dataframe

): + " "Converting a DataTable type to a dataframe type" " AColtempcount =0 atDic={} - while(Coltempcount dt. Columns.count): -Li = [] -Rowtempcount =0 -ColName =dt. Columns[coltempcount]. ColumnName - while(Rowtempcount dt. Rows.Count): inresult =dt. Rows[rowtempcount][coltempcount] - li.append (Result) toRowtempcount = Rowtempcount + 1 + -Coltempcount = Coltempcount + 1 the Dic.setdefault (Colname,li) * $DF =PD.

Small meatballs stepping into Python's path: python_day06 (another structure series in the Pandas Library)

write in front: by yesterday's record we know, pandas.read_csv (" file name ") method to read the file, the variable type returned is dataframe structure . Also pandas one of the most core types in . That in pandas there is no other type Ah, of course there are, we put dataframe type is understood to be data con

Python--rename changing the label names (that is, column labels) for series and Dataframe

Reprint: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.rename.html>>> s = PD. Series ([1, 2, 3]) >>> s0 3dtype:int64>>> s.rename ("My_name") # scalar , changes SERIES.NAME0 3name:my_name, dtype:int64>>> s.rename (Lambda x:x * * 2) # F Unction, changes Labels0 3dtype:int64>>> s.rename ({1:3, 2:5}) # Mapping, Changes Labels0 3dtype:int64>>> df = PD.

"The truth value of a Series is ambiguous" error and its solution when dataframe filter data

Use the following methods to Dataframe data: Import pandas as PD data = pd.read_csv (' haiti.csv ') print data[data[' LATITUDE ']>18 and data[' LATITUDE '] Or Import pandas as PD data = pd.read_csv (' haiti.csv ') print data[data. Latitude>18 and data. LATITUDE Error "valueerror:the truth value of a Series is ambig

Python Pandas time Series double axis line chart

Time series PV-GMV Double axis line chartImport NumPy as Npimport pandas as Pdimport matplotlib.pyplot as Pltn = 12date_series = Pd.date_range (start= ' 2018-01-01 ', Periods=n, freq= "D") data = { ' PV ': [10000, 12000, 13000, 11000, 9000, 16000, 10000, 12000, 13000, 11000, 9000, 16000], ' GMV ': [+-------------- DataFrame (data, index=date_series) ax = df

Python captures financial data, pandas performs data analysis and visualization series (to understand the needs), pythonpandas

Python captures financial data, pandas performs data analysis and visualization series (to understand the needs), pythonpandasFinally, I hope that it is not the preface of the preface. It is equivalent to chatting and chatting. I think a lot of things are coming from the discussion. For example, if you need something, you can only communicate with yourself, only by summing up some things can we better chat

Pyspark Learning Series (ii) data processing by reading CSV files for RDD or dataframe

First, local CSV file read: The easiest way: Import pandas as PD lines = pd.read_csv (file) lines_df = Sqlcontest.createdataframe (lines) Or use spark to read directly as Rdd and then in the conversion lines = sc.textfile (' file ')If your CSV file has a title, you need to remove the first line Header = Lines.first () #第一行 lines = lines.filter (lambda row:row!= header) #删除第一行 At this time lines for RDD. If you need to

Total Pages: 2 1 2 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.