convolutional neural network coursera

Discover convolutional neural network coursera, include the articles, news, trends, analysis and practical advice about convolutional neural network coursera on alibabacloud.com

Cyclic neural networks (recurrent neural network,rnn)

conclude that the problem it is best at solving is related to the time series. RNN is also the most natural neural network structure for dealing with such problems. The principal structure of a RNN is duplicated several times by the time series, and structure A is also called the loop body. How to design the network structure of loop body A is the key to solve

Deepeyes: Progressive visual analysis system for depth-neural network design (deepeyes:progressive Visual analytics for designing deep neural Networks)

distribution or probability model of the predicted results and samples of the degree of fit. The lower the confusion, the better the degree of fit. The calculation of the confusion histogram is shown in Flow 2:Figure 2 The construction process of the confusion histogram. (a) Sampled-area instances of the sensed region, (b) the excitation of the neurons in each area of the perceptual region, the color mapping of the excitation value, (c) the excitation of a series of neurons in the layer is tran

Current depth neural network model compression and acceleration Method Quick overview of current depth neural network model compression and acceleration method

redundant and unimportant parameters. Based on the method of low rank decomposition (Low-rank factorization), matrix/tensor decomposition is used to estimate the most informative parameters in deep CNN. Based on the migration/compression convolution filter (Transferred/compact convolutional filters) method, a special structure convolution filter is designed to reduce the complexity of storage and computation. Knowledge refinement (knowledge distillat

Deep Learning Neural Network pure C language basic edition, deep Neural Network C Language

Deep Learning Neural Network pure C language basic edition, deep Neural Network C Language Today, Deep Learning has become a field of fire, and the performance of Deep Learning Neural Networks (DNN) in the field of computer vision is remarkable. Of course,

Fifth chapter (1.5) Depth learning--a brief introduction to convolution neural network _ Neural network

Convolution neural Network (convolutional neural Network, CNN) is a feedforward neural network, which is widely used in computer vision and other fields. This article will briefly intro

The basic principle of deep neural network to identify graphic images

absrtact : This paper will analyze the basic principle of deep neural network to recognize graphic images in detail. For convolutional neural Networks, this paper will discuss in detail the principle and function of each layer in the network in the image recognition, such as

From image to knowledge: an analysis of the principle of deep neural network for Image understanding

absrtact : This paper will analyze the basic principle of deep neural network to recognize graphic images in detail. For convolutional neural Networks, this paper will discuss in detail the principle and function of each layer in the network in the image recognition, such as

[Paper Interpretation] CNN Network visualization--visualizing and understanding convolutional Networks

OverviewAlthough the CNN deep convolution network in the field of image recognition has achieved significant results, but so far people to why CNN can achieve such a good effect is unable to explain, and can not put forward an effective network promotion strategy. Using the method of Deconvolution visualization in this paper, the author discovers some problems of alexnet, and makes some improvements on the

Machine Learning Public Lesson Note (4): Neural Network (neural networks)--Indicates

network prediction Total number of layers $L $-neural network (including input and output layers) $\theta^{(L)}$-the weight matrix of the $l$ layer to the $l+1$ layer $s _l$-the number of neurons in the $l$ layer, note that $i$ counts from 1, and the weights of bias neurons are not counted in the regular term. The number of neurons in the _{l+1}$

TensorFlow: Google deep Learning Framework (v) image recognition and convolution neural network

6th Chapter Image Recognition and convolution neural network 6.1 image recognition problems and the classic data set 6.2 convolution neural network introduction 6.3 convolutional neural networ

Deep learning--the artificial neural network and the upsurge of research

large number of outstanding academics joining the deep neural network, especially the Bengio research group at the University of Montreal and the NG Research Group at Stanford University. From the analysis of the proposed model, an important contribution of the Bengio research group is to propose a deep learning network based on the self-encoder (auto-encoder).

Deep Learning Neural Network (Cnn/rnn/gan) algorithm principle + actual combat

, including neural network structure, forward propagation, reverse propagation, gradient descent and so on. The second part explains the basic structure of convolutional neural network, including convolution, pooling and full connection. In particular, it focuses on the deta

[Mechine Learning & Algorithm] Neural network basics

is to "share the rights" (weight sharing), which allows a group of neurons to use the same connection right, a strategy that plays an important role in convolutional neural networks (convolutional neural Networks, referred to as CNN). For a CNN network:CNN can train with BP algorithm, but in training, whether it is th

Wunda Deep Learning notes Course4 WEEK2 a deep convolutional network case study

1.why Look in case study This week we'll talk about some typical CNN models, and by learning these we can deepen our understanding of CNN and possibly apply them in practical applications or get inspiration from them. 2.Classic Networks The LENET-5 model was presented by Professor Yann LeCun in 1998 and is the first convolutional neural network to be successfull

Convolution neural network Combat (Visualization section)--using Keras to identify cats

Original page: Visualizing parts of convolutional neural Networks using Keras and CatsTranslation: convolutional neural network Combat (Visualization section)--using Keras to identify cats It is well known, that convolutional

Introduction to machine learning--talking about neural network

emerging. The text of the formula looks a bit around, below I send a detailed calculation process diagram.Refer to this: Http://www.myreaders.info/03_Back_Propagation_Network.pdf I did the finishing Here is the calculation of a record, immediately update the weight, after each calculation of a piece is immediately updated weight. In fact, the effect of batch update is better, the method is not to update the weight of the case, the record set of each record is calculated once, the added valu

Deep Learning paper notes (IV.) The derivation and implementation of CNN convolution neural network

Deep Learning paper notes (IV.) The derivation and implementation of CNN convolution neural network[Email protected]Http://blog.csdn.net/zouxy09 I usually read some papers, but the old feeling after reading will slowly fade, a day to pick up when it seems to have not seen the same. So want to get used to some of the feeling useful papers in the knowledge points summarized, on the one hand in the process of

Practice of deep learning algorithm---convolution neural network (CNN) principle

, convolutional network (CNN) is to solve this problem and propose a framework.So how do you make the neural network have the transformation invariance I want? We know that the rise of neural networks, to a large extent, is the application of bionics in the field of artifici

[Blog] Based on convolution neural network algorithm for image search

realization of Image search algorithm based on convolutional neural network If you use this name to search for papers, there must be a lot. Why, because from a theoretical point of view, convolutional neural networks are ideal for finding similar places in images. Think abou

Neural Network Structure Summary

reversal of the convolutional neural network. For example, enter the word "cat" to train the network by comparing the images generated by the network with the real images of the cat, so that the network can produce images more li

Total Pages: 9 1 .... 5 6 7 8 9 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.