Learn about convolutional neural network explained, we have the largest and most updated convolutional neural network explained information on alibabacloud.com
ImageNet classification with deep convolutional neural Networks reading notes(after deciding to read a paper each time, the notes are recorded on the blog.) )This article, published in NIPS2012, was Hinton and his students, in response to doubts about deep learning, used deep learning for imagenet, the largest database of image recognition, and eventually achieved very surprising results, The result is much
.
Pretreatment: Mean removal;whitening (ZCA)
Enhanced generalization capability: Data augmentation;weight regularization; adding noise to the network, including dropout,dropconnect,stochastic pooling.
Dropout: The output of some neurons in the fully connected layer is randomly set to 0 at the full connection layer only.
Dropconnect: Also only used on the full-connection layer, Random binary mask on weights.
Stochastic Pooli
1, IntroductionDL solves VO problem: End-to-end vo with RCNN2. Network structureA.CNN based Feature ExtractionThe paper uses the Kitti data set.The CNN section has 9 convolutional layers, with the exception of CONV6, the other convolutional layers are connected to 1 layers of relu, and there are 17 layers.B, RNN based sequential modellingRNN is different from CNN
0-Background
The so-called style conversion is based on a content image and a style image, merging the two, creating a new image that combines both contents and style.The required dependencies are as follows:
Import OS
import sys
import scipy.io
import scipy.misc
import Matplotlib.pyplot as Plt
from Matplotlib.pyplot import imshow from
PIL import Image from
nst_utils import *
import NumPy as NP
import te Nsorflow as TF
%matplotlib inline
1-transfer Learning
Migration learning is the applicat
I. Documentation names and authorsconvolutional neural Networks at Constrained time COST,CVPR two. Reading timeJune 30, 2015Three. Purpose of the documentThe author hopes to improve the accuracy of CNN by modifying the model depth and the parameters of the convolution template, while maintaining the computational complexity. Through a lot of experiments, the author finds the importance of different parameters in the
. We use the cublas. lib and curand. Lib libraries. One is matrix calculation and the other is random number generation. I applied for all the memory I needed at one time. After the program started running, there was no data exchange between the CPU and GPU. This proved to be very effective. The program performance is about dozens of times faster than the original C language version (if the network is relatively large, it can reach a speed-up ratio of
scientists have contributed significantly to the success of convolutional networks?There is no doubt that the neuro-cognitive machine (Neocognitron) proposed by Japanese scholar Kunihiko Fukushima has enlightening significance. Although the early forms of convolutional networks (Convnets) did not contain too many Neocognitron, the versions we used (with pooling layers) were affected.This is a demonstration
affected.This is a demonstration of the mutual connection between the middle layer and the layers of the neuro-cognitive machine. Fukushima K. (1980) in the neuro-cognitive machine article, the self-organizing neural network model of pattern recognition mechanism is not affected by the change of position.Can you recall the "epiphany" moments or breakthroughs that occurred in the early days of
Wang, Min, Baoyuan Liu, and Hassan Foroosh. "Factorized convolutional neural Networks." ArXiv preprint (2016).
This paper focuses on the optimization of the convolution layer in the deep network, which has three unique features:-Can be trained directly . You do not need to train the original model first, then use the sparse, compressed bits and so on to compress.
of the "object" in the "the position with the maximum score
Use a cost function this can explicitly model multiple objects present in the image.
Because there may be many objects in the graph, the multi-class classification loss is not applicable. The author sees this task as multiple two classification questions, loss function and classification score as followsTrainingMuti-scale TestExperimentClassification
MAP on VOC test: +3.1% compared with [56]
MAP on VOC test: +7.
Minimalist notes Deepid-net:object detection with deformable part Based convolutional Neural Networks
Paper Address Http://www.ee.cuhk.edu.hk/~xgwang/papers/ouyangZWpami16.pdf
This is the CUHK Wang Xiaogang group 2017 years of a tpami, the first hair in the CVPR2015, increased after the experiment to cast the journal, so the contrast experiment are some alexnet,googlenet and other early
alexnet Summary Notes
Thesis: "Imagenet classification with Deep convolutional neural"
1 Network Structure
The network uses the logic regression objective function to obtain the parameter optimization, this network structure as shown in Figure 1, a total of 8 layer
ImageNet classification with deep convolutional neural Networks reading notes(2013-07-06 22:16:36) reprint
Tags: deep_learning imagenet Hinton
Category: machine learning
(after deciding to read a paper each time, the notes are recorded on the blog.) )This article, published in NIPS2012, is Hinton and his students are using deep learning in response to doubts about deep learn
skills ("Alchemy") in convolutional networks. The principle behind some important assistant technique is explained. The assistant techniques include gradient descent, learning rate, activation function, initialization of network parameters, batch normalization, data enhancement, visual training process analysis, fine-tune, and many other
http://m.blog.csdn.net/blog/wu010555688/24487301This article has compiled a number of online Daniel's blog, detailed explanation of CNN's basic structure and core ideas, welcome to exchange.[1] Deep Learning Introduction[2] Deep Learning training Process[3] Deep learning Model: the derivation and implementation of CNN convolution neural network[4] Deep learning Model: the reverse derivation and practice of
neurons are active, only a very small fraction will be active, the different layers of neurons can not be fully connected. In the back of 5.5.6, we will see an example of the sparse network structure used by convolutional neural networks.We can naturally design a more complex network structure, but in general we have
-type function:Of course, other activation functions will be used, which will be explained in detail below.
4,Neural Networks for learning purposes:
I want to be able to learn a model that can output a desired output to the input.
The way to learn:Changing the connection weights of the network under the stimulation of the external input sample
The nature of Learn
This article first Huchi: HTTPS://JIZHI.IM/BLOG/POST/INTUITIVE_EXPLANATION_CNN
What is convolutional neural network. And why it's important.
convolutional Neural Networks (convolutional neu
conclude that the problem it is best at solving is related to the time series. RNN is also the most natural neural network structure for dealing with such problems.
The principal structure of a RNN is duplicated several times by the time series, and structure A is also called the loop body. How to design the network structure of loop body A is the key to solve
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.