coursera machine learning andrew ng cost

Want to know coursera machine learning andrew ng cost? we have a huge selection of coursera machine learning andrew ng cost information on alibabacloud.com

Coursera "Machine learning" Wunda-week1-03 gradient Descent algorithm _ machine learning

Gradient descent algorithm minimization of cost function J gradient descent Using the whole machine learning minimization first look at the General J () function problem We have J (θ0,θ1) we want to get min J (θ0,θ1) gradient drop for more general functions J (Θ0,θ1,θ2 .....) θn) min J (θ0,θ1,θ2 .....) Θn) How this algorithm works. : Starting from the initial ass

Coursera-machine Learning, Stanford:week 5

Overview Cost Function and BackPropagation Cost Function BackPropagation algorithm BackPropagation Intuition Back propagation in practice Implementation Note:unrolling Parameters Gradient Check Random initialization Put It together Application of Neural Networks Autonomous Driving Review Log

Coursera Machine Learning Study notes (i)

Before the machine learning is very interested in the holiday cannot to see Coursera machine learning all the courses, collated notes in order to experience repeatedly.I. Introduction (Week 1)-What's machine learningThere is no un

Stanford Coursera Machine Learning Programming Job Exercise 5 (regularization of linear regression and deviations and variances)

different lambda, the calculated training error and cross-validation error are as follows:Lambda Train error Validation error 0.000000 0.173616 22.066602 0.001000 0.156653 18.597638 0.003000 0.190298 19.981503 0.010000 0.221975 16.969087 0.030000 0.281852 12.829003 0.100000 0.459318 7.587013 0.300000 0.921760 1.000000 2.076188 4.260625 3.000000 4.901351 3.822907 10.000000 16.092213 9.945508The graphic is represented as follows:As

Coursera Online Learning---section tenth. Large machine learning (Large scale machines learning)

First, how to learn a large-scale data set?In the case of a large training sample set, we can take a small sample to learn the model, such as m=1000, and then draw the corresponding learning curve. If the model is found to be of high deviation according to the learning curve, the model should continue to be adjusted on the existing sample, and the adjustment strategy should refer to the High deviation of se

Coursera Machine Learning Chapter 9th (UP) Anomaly Detection study notes

m>=10n and uses multiple Gaussian distributions.In practical applications, the original model is more commonly used, the average person will manually add additional variables.If the σ matrix is found to be irreversible in practical applications, there are 2 possible reasons for this:1. The condition of M greater than N is not satisfied.2. There are redundant variables (at least 2 variables are exactly the same, XI=XJ,XK=XI+XJ). is actually caused by the linear correlation of the characteristic

Coursera Machine Learning Study notes (vi)

-Gradient descentThe gradient descent algorithm is an algorithm for calculating the minimum value of a function, and here we will use the gradient descent algorithm to find the minimum value of the cost function.The idea of a gradient descent is that we randomly select a combination of parameters and calculate the cost function at the beginning, and then we look for the next combination of parameters that w

Coursera Machine Learning second week programming job Linear Regression

use of MATLAB. *.4.gradientdescent.mfunction [Theta, j_history] =gradientdescent (X, y, theta, Alpha, num_iters)%gradientdescent performs gradient descent to learn theta% theta = gradientdescent (X, y, theta, Alpha, num_iters) up Dates theta by% taking num_iters gradient steps with learning rate alpha% Initialize Some useful valuesm= Length (y);%Number of training examplesj_history= Zeros (Num_iters,1); forITER =1: Num_iters% ======================

Coursera Machine Learning Study notes (10)

-Learning RateIn the gradient descent algorithm, the number of iterations required for the algorithm convergence varies according to the model. Since we cannot predict in advance, we can plot the corresponding graphs of iteration times and cost functions to observe when the algorithm tends to converge.Of course, there are some ways to automatically detect convergence, for example, we compare the change valu

"Coursera-machine learning" Linear regression with one Variable-quiz

, i.e., all of our training examples lie perfectly on some straigh T line. If J (θ0,θ1) =0, that means the line defined by the equation "y=θ0+θ1x" perfectly fits all of our data. For the To is true, we must has Y (i) =0 for every value of i=1,2,..., m. So long as any of our training examples lie on a straight line, we'll be able to findθ0 andθ1 so, J (θ0,θ1) =0. It is not a necessary that Y (i) =0 for all of our examples. We can perfectly predict the value o

Coursera Machine Learning 5th Chapter Neural Networks:learning Study notes

)/∂ (θ (1) JK) is tested for gradients. After the partial derivative code does not have a problem, close the Gradient check section code.6. Use gradient descent or other advanced algorithms to perform reverse propagation to find the θ values for minimizing j (θ).This paper describes the gradient descent algorithm in neural networks: starting from the random initial point, descending step by step, until the local optimal value is obtained. Algorithms such as gradient descent can at least guarante

Ntu-coursera machine Learning: Noise and Error

, the weight of the high-weighted data is increased by 1000 times times the probability, which is equivalent to replication. However, if you are traversing the entire test set (not sampling) to calculate the error, there is no need to modify the call probability, just add the weights of the corresponding errors and divide by N. So far, we have expanded the VC Bound, which is also set up on the issue of multiple classifications!SummaryFor more discussion and exchange on

Coursera Machine Learning Study notes (v)

-Cost functionFor the training set and our assumptions, we will consider how to determine the coefficients in the assumptions.What we are going to do now is to choose the right parameters, and the selection of parameters directly affects the accuracy of the resulting straight line for the training set description. The difference between the predicted value and the actual value in the training set is the modeling error (Modeling error).the

Coursera Machine Learning Study notes (vii)

-Gradient descent for linear regressionHere we apply the gradient descent algorithm to the linear regression model, we first review the gradient descent algorithm and the linear regression model:We then expand the slope of the gradient descent algorithm to the partial derivative:In most cases, the linear regression model cost function is shaped like a convex body, so the local minimum value is equivalent to the global minimum:The following is the enti

Coursera Machine Learning Study notes (12)

-Normal equationSo far, the gradient descent algorithm has been used in linear regression problems, but for some linear regression problems, the normal equation method is a better solution.The normal equation is solved by solving the following equations to find the parameters that make the cost function least:Assuming our training set feature matrix is x, our training set results are vector y, then the normal equation is used to solve the vector:The f

Coursera Open Class Machine Learning: Linear Algebra Review (optional)

general, multiplication does not satisfy the exchange law: $ \ Matrix {A} \ times \ matrix {B} \ not = \ matrix {B} \ times \ matrix {A} $Special Matrix $ \ Matrix {I }=\ matrix {I _ {n \ times N }}=\ begin {bmatrix} 1 0 \ cdots 0 0 \ Cr0 1 \ cdots 0 0 \ Cr \ vdots \ vdots \ Cr0 0 \ cdots 1 0 \ Cr0 0 \ cdots 0 1 \ Cr \ end {bmatrix} $ For any matrix $ \ matrix {A} $: $ \ Matrix {A} \ times \ matrix {I }=\ matrix {I} \ times \ matrix {A }=\ matrix {A} $Inverse Matrix and inverte

Coursera Machine Learning notes (eight)

Mainly for the week content: large-scale machine learning, cases, summary(i) Random gradient descent methodIf there is a large-scale training set, the normal batch gradient descent method needs to calculate the sum of squares of errors across the entire training set, which is a very large computational cost if the learning

Coursera Machine Learning second week quiz answer Octave/matlab Tutorial

would the Vectorize this code to run without all for loops? Check all the Apply. A: v = A * x; B: v = Ax; C: V =x ' * A; D: v = SUM (A * x); Answer: A. v = a * x; v = ax:undefined function or variable ' Ax '. 4.Say you has a vectors v and Wwith 7 elements (i.e., they has dimensions 7x1). Consider the following code: z = 0; For i = 1:7 Z = z + V (i) * W (i) End Which of the following vectorizations correctly compute Z? Check all the Apply.

Coursera-machine Learning, Stanford:week 11

Overview photo OCR problem Description and Pipeline sliding Windows getting Lots of data and Artificial data ceiling analysis:what part of the Pipeline to work on Next Review Lecture Slides Quiz:Application:Photo OCR Conclusion Summary and Thank You Log 4/20/2017:1.1, 1.2; Note Ocr? ... Coursera-

Coursera Machine Learning Study notes (14)

cost function least.The algorithm is:After derivation, get:Note: Although the resulting gradient descent algorithm appears to be the same as the gradient descent algorithm for linear regression, the hypothetical function here differs from the linear regression, so it is actually different. In addition, it is still necessary to perform feature scaling before applying the gradient descent algorithm.In addition, there are some alternatives to the gradie

Total Pages: 4 1 2 3 4 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.