coursera machine learning ng

Want to know coursera machine learning ng? we have a huge selection of coursera machine learning ng information on alibabacloud.com

Andrew Ng's Machine Learning course learning (WEEK5) Neural Network Learning

This semester has been to follow up on the Coursera Machina learning public class, the teacher Andrew Ng is one of the founders of Coursera, machine learning aspects of Daniel. This course is a choice for those who want to underst

Coursera Machine Learning second week quiz answer Octave/matlab Tutorial

would the Vectorize this code to run without all for loops? Check all the Apply. A: v = A * x; B: v = Ax; C: V =x ' * A; D: v = SUM (A * x); Answer: A. v = a * x; v = ax:undefined function or variable ' Ax '. 4.Say you has a vectors v and Wwith 7 elements (i.e., they has dimensions 7x1). Consider the following code: z = 0; For i = 1:7 Z = z + V (i) * W (i) End Which of the following vectorizations correctly compute Z? Check all the Apply.

Coursera Machine Learning second week programming job Linear Regression

use of MATLAB. *.4.gradientdescent.mfunction [Theta, j_history] =gradientdescent (X, y, theta, Alpha, num_iters)%gradientdescent performs gradient descent to learn theta% theta = gradientdescent (X, y, theta, Alpha, num_iters) up Dates theta by% taking num_iters gradient steps with learning rate alpha% Initialize Some useful valuesm= Length (y);%Number of training examplesj_history= Zeros (Num_iters,1); forITER =1: Num_iters% ======================

Coursera Machine Learning Study notes (vii)

-Gradient descent for linear regressionHere we apply the gradient descent algorithm to the linear regression model, we first review the gradient descent algorithm and the linear regression model:We then expand the slope of the gradient descent algorithm to the partial derivative:In most cases, the linear regression model cost function is shaped like a convex body, so the local minimum value is equivalent to the global minimum:The following is the entire convergence and parameter determination pr

Coursera-machine Learning, Stanford:week 11

Overview photo OCR problem Description and Pipeline sliding Windows getting Lots of data and Artificial data ceiling analysis:what part of the Pipeline to work on Next Review Lecture Slides Quiz:Application:Photo OCR Conclusion Summary and Thank You Log 4/20/2017:1.1, 1.2; Note Ocr? ... Coursera-

Coursera Machine Learning Study notes (12)

-Normal equationSo far, the gradient descent algorithm has been used in linear regression problems, but for some linear regression problems, the normal equation method is a better solution.The normal equation is solved by solving the following equations to find the parameters that make the cost function least:Assuming our training set feature matrix is x, our training set results are vector y, then the normal equation is used to solve the vector:The following table shows the data as an example:T

Coursera Open Class Machine Learning: Linear Algebra Review (optional)

general, multiplication does not satisfy the exchange law: $ \ Matrix {A} \ times \ matrix {B} \ not = \ matrix {B} \ times \ matrix {A} $Special Matrix $ \ Matrix {I }=\ matrix {I _ {n \ times N }}=\ begin {bmatrix} 1 0 \ cdots 0 0 \ Cr0 1 \ cdots 0 0 \ Cr \ vdots \ vdots \ Cr0 0 \ cdots 1 0 \ Cr0 0 \ cdots 0 1 \ Cr \ end {bmatrix} $ For any matrix $ \ matrix {A} $: $ \ Matrix {A} \ times \ matrix {I }=\ matrix {I} \ times \ matrix {A }=\ matrix {A} $Inverse Matrix and inverte

Andrew Ng's Machine Learning course Learning (WEEK4) Multi-Class classification and neural Networks

This semester has been to follow up on the Coursera Machina learning public class, the teacher Andrew Ng is one of the founders of Coursera, machine learning aspects of Daniel. This course is a choice for those who want to underst

Machine learning notes-from Andrew Ng's instructional video

Recently is a period of idle, do not want to waste, remember before there is a collection of machine learning link Andrew ng NetEase public class, of which the overfiting part of the group will report involved, these days have time to decide to learn this course, at least a superficial understanding.Originally wanted to go online to check

Ng Lesson 17th: Mass machine learning (Large scale machines learning)

17.1 Study of large data sets17.2 Random Gradient descent method17.3 Miniature Batch gradient descent17.4 Stochastic gradient descent convergence17.5 Online Learning17.6 mapping Simplification and data parallelism 17.1 Study of large data sets 17.2 Stochastic gradient descent method 17.3miniature Batch gradient descent 17.4 stochastic gradient descent convergence 17.5 Online learning 17.6 mapping simplification and data parallelism

Model selection of learning theory--andrew ng machine Learning notes (eight)

-validation approach. Cross-validation A simple idea to solve the above model selection problem is that I use 70% of the data to train each model, with 30% of the data for training error calculation, and then we compare the training errors of each model, we can choose the training error is relatively small model. If you do not refer to these errors (learn the theory of experience risk minimization--andrew ng machi

Andrew ng Machine Learning Introductory Learning Note (iv) neural Network (ii)

This paper mainly records the cost function of neural network, the usage of gradient descent in neural network, the reverse propagation, the gradient test, the stochastic initialization and other theories, and attaches the MATLAB code and comments of the relevant parts of the course work. Concepts of neural networks, models, and calculation of predictive classification using forward propagation refer to Andrew Ng

Machine Learning Machines Learning (by Andrew Ng)----Chapter Two univariate linear regression (Linear Regression with one Variable)

the gradient descent, when we calculate the derivative term, we need to do the summation, so, in each individual gradient descent, we finally have to calculate such a thing, this item needs to sum all the m training samples. In the following lesson, we will also talk about a method that can solve the minimum value of the cost function J without the need for multi-step gradient descent, which is another called normal equation (normal equations) . The method. In fact, the gradient descent method

Machine learning Yearning-andrew NG

rate to characterize the model.mly--12. Takeaways:setting up development and test sets1. Your validation set and test set should be captured as much as possible from the data in your actual application scenario. Validation sets and test sets do not have to be distributed identically to your training data. (I think it's best to have a similar distribution between the training set and the validation set, if the training data and the validation data are distributed too much, you may be able to tra

[Machine learning] linear regression is so easy to understand as Andrew Ng says

what is linear regression. The so-called linear regression (taking a single variable as an example) is to give you a bunch of points, and you need to find a straight line from this pile of points. Figure below This screenshot is from Andrew Ng's What you can do when you find this line. Let's say we find A and b that represent the line, then the line expression is y = a + b*x, so when a new x is present, we can know Y. Andrew ng First Class said, what

Stanford ng Machine Learning Lecture Notes-Referral system (Recommender systems)

and the computational optimization of the problem is discussed.Collaborativefiltering algorithm:We can iteratively optimize the theta and eigenvectors, but this performance is relatively low, so now consider improving the performance of the algorithm. At the same time, two kinds of methods are solved.is to combine the two method optimization functions to get the overall objective function.Algorithm Flowchart:Exercises:Vectorization Low Rank matrix factorization:The main thing here is to constru

Logistic regression cost function and the derivation of J (θ)----Andrew Ng "Machine learning" open class

it is easy to cause the overflow. This is because X and ln (x) have the same monotonicity, and both sides take the logarithmSo this is the J (Theta) that Andrew gave, and the only difference is that Andrew has a negative coefficient in front of it, which makes the maximum value a minimum, so that the gradient descent algorithm can be used.But in fact, with this formula can also complete the task, just use the algorithm to become gradient rise, in fact, no difference.ConclusionHere Amway "

NG Machine Learning Video notes (11) Theory of--k-mean value algorithm

NG Machine Learning Video notes (11)--k - means algorithm theory(Reproduced please attach this article link--linhxx)I. OverviewK-Means (K-means) algorithm, is a unsupervised learning (unsupervised learning) algorithm, its core is clustering (clustering), that is, a set of in

NG Machine Learning Video Notes (ii)--gradient descent algorithm interpretation and solving θ

NG Machine Learning Video notes (ii)--Gradient descent algorithm interpretation and solving θ (Reproduced please attach this article link--linhxx) First, the interpretation gradient algorithmA gradient algorithm formula and a simplified cost function diagram, as shown in.1) Partial derivativeBy the know, at point A, its partial derivative is less than 0, so θ min

Andrew ng Machine Learning course 17 (2)

Andrew ng Machine Learning course 17 (2)Disclaimer: Reference Please specify source http://blog.csdn.net/lg1259156776/Description: This paper mainly introduces the use of value iteration and policy iteration two kinds of iterative algorithms to solve MDP problem, also introduced in practical application how to accumulate "experience" to update the transfer probab

Total Pages: 9 1 2 3 4 5 6 .... 9 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.