coursera ml

Discover coursera ml, include the articles, news, trends, analysis and practical advice about coursera ml on alibabacloud.com

VC multithreaded C Run-time Library/ML/MLD/MT/MTD/MD/MDD_MT

: Http://www.cnblogs.com/qinfengxiaoyue/archive/2013/02/01/2889668.html http://blog.csdn.net/pgmsoul/article/details/4203941 --------------------------------------------------------------------------------------------------------------- -------------

ML: NLP questions for natural language processing

Three milestones in natural language processing: http://blog.csdn.net/sddamoke/article/details/1419973the two facts were: The grammar of phrase structure cannot describe the natural language effectively. Secondly, the coverage of phrase structure

Coursera Online Learning---section tenth. Large machine learning (Large scale machines learning)

First, how to learn a large-scale data set?In the case of a large training sample set, we can take a small sample to learn the model, such as m=1000, and then draw the corresponding learning curve. If the model is found to be of high deviation

Coursera-machine Learning, Stanford:week 1

Welcome and Introductionoverviewreadinglog 9/9 videos and quiz completed; 10/29 Review; Note1.1 Welcome 1) What are machine learning? Machine learning are the science of getting compters to learn, without being

Coursera Machine Learning Study notes (iv)

 II. Linear Regression with one Variable (Week 1)-Model representationIn the case of previous predictions of house prices, let's say that our training set of regression questions (Training set) looks like this:We use the following notation to

Coursera Public Lesson-machine_learing: Programming 7

This week's programming work is mainly two-part content.1.k-means Clustering.2.PCA (Principle Component analys) principal component analysis.The main method is to compress the image by clustering the image, and then it is found that PCA can compress

Coursera "Machine learning" Wunda-week1-03 gradient Descent algorithm _ machine learning

Gradient descent algorithm minimization of cost function J gradient descent Using the whole machine learning minimization first look at the General J () function problem We have J (θ0,θ1) we want to get min J (θ0,θ1) gradient drop for more general

Coursera Wunda Machine Learning Course Summary notes and work Code-5th week neural network continued

Neural networks:learning Last week's course learned the neural network forward propagation algorithm, this week's course mainly lies in the neural network reverse renewal process. 1.1 Cost function Let's recall the value function of logistic

Coursera Deep Learning Fourth lesson accumulation neural network fourth week programming work Art Generation with neural Style transfer-v2

Deep Learning & art:neural Style Transfer Welcome to the second assignment of this week. In this assignment, you'll learn about neural Style Transfer. This algorithm is created by Gatys et al. (https://arxiv.org/abs/1508.06576). in this assignment,

Coursera-an Introduction to Interactive programming in Python (Part 1)-mini-project-rock-paper-scissors-lizard-spock

Mini-project Description-rock-paper-scissors-lizard-spockRock-paper-scissors is a hand game this is played by the people. The players count to three in unison and simultaneously "throw" one of the three hand signals this correspond to rock, paper O

Coursera-an Introduction to Interactive programming in Python (Part 1)-mini-project-"Guess the number" game

Mini-project description-"Guess the number" gameOne of the simplest two-player games is "Guess the number". The first player thinks of a secret number in some known range while the second player attempts to guess the number. After each guess, the

Coursera has a wealth of biological information and other courses win7 access settings

1. Open the URL https://www.coursera.org Register, then search for the course you want to study, no certificate is required for free2. If the video has been buffered or displays a black screen, you need to modify the

Coursera Open Class Machine Learning: Linear Algebra Review (optional)

This section mainly reviews some simple knowledge about linear algebra.Matrix and vector Matrix Number of $ m \ times N $ A _ {IJ} (I = ,..., m; j = 1, 2 ,..., n) $ the number table of $ M $ row $ N $ column, which is called the matrix of $ M $ row $

Coursera Machine Learning Notes (iv)

Mainly for the sixth week Content machine learning application recommendations and system design.What to do nextWhen training good one model, predicting unknown data discovery, how to improve it? Get more examples of training Try to

Coursera Machine Learning Course note--Linear Models for classification

In this section, a linear model is introduced, and several linear models are compared, and the linear regression and the logistic regression are used for classification by the conversion error function.More important is this diagram, which explains

Coursera Machine Learning Techniques Course Note 09-decision Tree

This is what we have learned (except decision tree)Here is a typical decision tree algorithm, with four places to choose from:Then introduced a cart algorithm: By decision Stump divided into two categories, the criterion for measuring subtree is

Coursera Big Machine Learning Course note 8--Linear Regression for Binary classification

I've been talking about why machines can learn, and starting with this lesson are some basic machine learning algorithms, i.e. how machines learn.This lesson is about linear regression, starting with the minimization of Ein, introducing the Hat

Coursera Machine Learning Notes (vii)

Mainly for the ninth week content: Anomaly detection, recommendation system(i) Anomaly detection (DENSITY estimation) kernel density estimation ( Kernel density estimation X (1) , X (2) ,.., x (m) If the data set is normal, we want to know

Coursera Machine Learning notes (eight)

Mainly for the week content: large-scale machine learning, cases, summary(i) Random gradient descent methodIf there is a large-scale training set, the normal batch gradient descent method needs to calculate the sum of squares of errors across the

Coursera Machine Learning Techniques Course Note 03-kernel Support Vector machines

This section is about the nuclear svm,andrew Ng's handout, which is also well-spoken.The first is kernel trick, which uses nuclear techniques to simplify the calculation of low-dimensional features by mapping high-dimensional features. The handout

Total Pages: 15 1 .... 10 11 12 13 14 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.