Discover coursera python for everybody, include the articles, news, trends, analysis and practical advice about coursera python for everybody on alibabacloud.com
This is a machine learning course that coursera on fire, and the instructor is Andrew Ng. In the process of looking at the neural network, I did find that I had a problem with a weak foundation and some basic concepts, so I wanted to take this course to find a leak. The current plan is to see the end of the neural network, the back is not necessarily seen.Of course, look at the process is still to do the notes to do homework, or read it is also a curs
Multivariate regressionReview simple linear regression: A feature, two correlation coefficients The actual application is much more complicated than this, such as1, house prices and housing area is not just a simple linear relationship.2, there are many factors affecting the price, not only the size of the house, but also many other factors. Now, in the first case, the price and the housing area are not simply linear, and may be two or polynomial:Two times function: Polynomial functions: P
?
This is determined by the characteristic value of the feature. There are two kinds of discrete value and continuous value, the distribution of discrete values is Poisson distribution, Bernoulli distribution, the distribution of continuous values is uniform distribution, normal distribution, chi-square distribution and so on. The reason why we assume the two eigenvalues of the above example is normal distribution is because the distribution of the majority of continuous-value variables
Questions -31 point Possible (graded)
Total time limit:
1000ms
Memory Limit:
65536kB
Describe
Write a two-dimensional array class Array2, so that the following program output is:
0,1,2,3,
4,5,6,7,
8,9,10,11,
Next
0,1,2,3,
4,5,6,7,
8,9,10,11,
Program:
#include
Add your code here
int main () { Array2 a (3,4); int i,j; fo
Overview
Cost Function and BackPropagation
Cost Function
BackPropagation algorithm
BackPropagation Intuition
Back propagation in practice
Implementation Note:unrolling Parameters
Gradient Check
Random initialization
Put It together
Application of Neural Networks
Autonomous Driving
Review
Log
2/10/2017:all the videos; Puzzled about Backprogation
2/11/2017:reviewed backpropaga
Week 2 Practice quizhelp Center
Warning:the hard deadline has passed. You can attempt it, but and you won't be. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify this answers here are I own work. Question 1 Suppose a query has a total of 5 relevant documents in a collection of documents. System A and System B have each retrieved, and the relevance status of the ranked lists is shown below:
Sys
Week 4 Practice quizhelp Center
The Warning:the hard deadline has passed. You can attempt it, Butyou won't get credit for it. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify This answers here are I own work. Question 1 Can a crawler that only follows hyperlinks identify hidden pages, does not have any incoming links? No Yes question 2 after obtaining the chunk's handle and locations from th
continuously updating theta.
Map Reduce and Data Parallelism:
Many learning algorithms can be expressed as computing sums of functions over the training set.
We can divide up batch gradient descent and dispatch the cost function for a subset of the data to many different machines So, we can train our algorithm in parallel.
Week 11:Photo OCR:
Pipeline:
Text detection
Character segmentation
Character classification
Using s
What are machine learning?The definitions of machine learning is offered. Arthur Samuel described it as: "The field of study that gives computers the ability to learn without being explicitly prog Rammed. " This was an older, informal definition.Tom Mitchell provides a more modern definition: 'a computer program was said to learn from experience E with R Espect to some class of tasks T and performance measure P, if it performance at tasks in T, as measured By P, improves with experience E."Examp
would the Vectorize this code to run without all for loops? Check all the Apply.
A: v = A * x;
B: v = Ax;
C: V =x ' * A;
D: v = SUM (A * x);
Answer: A. v = a * x;
v = ax:undefined function or variable ' Ax '.
4.Say you has a vectors v and Wwith 7 elements (i.e., they has dimensions 7x1). Consider the following code:
z = 0;
For i = 1:7
Z = z + V (i) * W (i)
End
Which of the following vectorizations correctly compute Z? Check all the Apply.
(w ')Description W over fitting3 Sources of errorNoise, Bias, Variance1. Noise NoiseOf an inherent, irreducible, or reduced nature. 2, Bias Deviation The simpler the model, the greater the deviation The more complex the model, the smaller the deviation3. Variance Variance Simple model, small variance Complex model, large variance Deviations and variance tradeoffs, deviations and variances cannot be calculated Training error and the amount of test data, fixed model complexity, a
-Normal equationSo far, the gradient descent algorithm has been used in linear regression problems, but for some linear regression problems, the normal equation method is a better solution.The normal equation is solved by solving the following equations to find the parameters that make the cost function least:Assuming our training set feature matrix is x, our training set results are vector y, then the normal equation is used to solve the vector:The following table shows the data as an example:T
Week 4 Quizhelp Center
Warning:the hard deadline has passed. You can attempt it, Butyou won't get credit for it. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify This answers here are I own work. Question 1 Which of the following is nottrue about GFS? The GFS keeps multiple replicas of the same file chunk. The file data transfer happens directly between the GFS client and the GFS chunkservers
Week 2 Quizhelp Center
Warning:the hard deadline has passed. You can attempt it, but and you won't be. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify this answers here are I own work. Question 1 Suppose a query has a total of 4 relevant documents in the collection. System A and System B have each retrieved, and the relevance status of the ranked lists is shown below:
System A: [-----------]
We recommend the responsive programming course on Coursera, an advanced Scala language course. At the beginning of the course, we proposed an Application Scenario: constructing a JSON string. If you do not know the JSON string, you can simply Google it. To do this, we define the following classes
abstract class JSON case class JSeq(elems: List[JSON]) extends JSON case class JObj(bindings: Map[String, JSON]) extends JSON case class JNum(num: Double) e
#include using namespacestd;/*int Wanmeifugai (int n) {if (n%2) {return 0; } else if (n==2) {return 3; }else if (n = = 0) return 1; else return (3*3) *wanmeifugai (n-4);}*///The following is a reference to the online program/*Ideas: Citation:http://m.blog.csdn.net/blog/njukingway/20451825First: F (n) = 3*f (n-2) + ... f (n) = 3*f (n-2) + 2*f (n-4) +....//just now our recursion is pushed in the smallest unit (3 blocks), but there are large units of small units (6, 9, 12 blocks, etc.) There
Week 2 gradient descent for multiple variables
[1] multi-variable linear model cost function
Answer: AB
[2] feature scaling feature Scaling
Answer: d
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
【]
Answer:
[Original] Andrew Ng chose to fill in the blanks in Coursera for Stanford machine learning.
m>=10n and uses multiple Gaussian distributions.In practical applications, the original model is more commonly used, the average person will manually add additional variables.If the σ matrix is found to be irreversible in practical applications, there are 2 possible reasons for this:1. The condition of M greater than N is not satisfied.2. There are redundant variables (at least 2 variables are exactly the same, XI=XJ,XK=XI+XJ). is actually caused by the linear correlation of the characteristic
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.