full implementation of multi-layered neural network recognition picture of the cat Original Coursera Course homepage, in the NetEase cloud classroom also has the curriculum resources but no programming practice. This program uses the functions completed in the last job, fully implementing a multilayer neural network, and training to identify whether there is a cat in the picture. There is no comment in the Code and Training test data download Cod
TensorFlow and tensorflow
Overview
The newly uploaded mcnn contains complete data read/write examples. For details, refer.
The official website provides three methods for Tensorflow to read data:
Feeding: each step of TensorFlow execution allows Python code to supply data.
Read data from a file: at the beginning o
software environment used in the study. For the last 4 years, open source software Torch7, the machine learning Library, has been our primary research platform, combining the perfect flexibility and very fast runtime execution to ensure rapid modeling. Our team is proud to have contributed to the open source project, which has evolved from the occasional bug fix to being the core maintainer of several key modules. With Google ' s recent open source release oftensorflow, we INITiated a project t
The TensorFlow model is used to store/load the tensorflow model.
TensorFlow model saving/loading
When we use an algorithm model online, we must first save the trained model. Tensorflow saves models in a different way than sklearn. sklearn is very direct. the dump and load methods of sklearn. externals. joblib can be sa
TensorFlow is a deep learning package developed by Google and is currently only supported on Linux and OSX. But this fall may have a Windows-enabled version of it, so for developers who use Windows, there's no need to wait for the fall or go to Linux and OSX TensorFlow. There are two ways to run on Windows, one is to install the virtual machine and install the Ubuntu system, install
Readers may recall the Tf.nn module in this series (ii) and (vi), the most concerned of which is the conv2d function.First, the blog (ii) MNIST routine convolutional.py key source list: DEF model (data, Train=false): "" "the model definition. " " # 2D convolution, with ' same ' padding (i.e. the output feature map has # the same size as the input). Note that {strides} is a 4D array whose # shape matches the data layout: [image index, y, x, depth]. CONV = tf.nn.conv2d (data,
1. What is a special course (specializations)?If you want to learn a major that you do not understand, you can study according to the special course arrangement. Coursera Special Course collects a field of curriculum, and according to the Order of teaching, it is very suitable for the new people who don't feel well.2. Program Design and algorithmThis special course is a computer Foundation course published by Peking University in
(Datasets) data (IRIS)#Exploratory Analysisnames (Iris) head (IRIS)#The following attempts to take Virginica,speal. The method of length is all wrongiris[,2]iris[iris$species=="virginica", 2]mean (iris[iris$species=="virginica", 2])##the above is Error,not correct##tapply (Test$sepal.length,test$species,mean)#using Species.mean to group vectors, this method is feasible, but the above method is necessary to look at the errorLibrary (Datasets) data (Mtcars) #以下为做某个题时的若干测试. And a trial-and-error l
networks and overfitting:
The following is a "small" Neural Network (which has few parameters and is easy to be unfitted ):
It has a low computing cost.
The following is a "big" Neural Network (which has many parameters and is easy to overfit ):
It has a high computing cost. For the problem of Neural Network overfitting, it can be solved through the regularization (λ) method.
References:
Machine Learning video can be viewed or downloaded on Coursera
NTU-Coursera ml: HomeWork 1 Q15-20Question15
The training data format is as follows:
The input has four dimensions, and the output is {-1, + 1 }. There are a total of 400 data records.
The question requires that the weight vector element be initialized to 0, and then "Naive Cycle" is used to traverse the training set. When the iteration is stopped, the weight vector is updated several times.
The so-called "Naive Cycle" means that after an error i
This series is a personal learning note for Andrew Ng Machine Learning course for Coursera website (for reference only)Course URL: https://www.coursera.org/learn/machine-learning Exercise 7--k-means and PCA
Download coursera-Wunda-Machine learning-all programming practice answers
In this exercise, you will implement the K-means clustering algorithm and apply it to compressed images. In the second section, y
TensorFlow Neural Network Optimization Strategy Learning, tensorflow Network Optimization
During the optimization of the neural network model, we will encounter many problems, such as how to set the learning rate. We can quickly approach the optimal solution in the early stage of training through exponential attenuation, after training, the system enters the optimal region stably. For the over-fitting probl
In China, Coursera is very choppy and often gets stuck when playing half of the video. I don't know why. Therefore, you can only download the file and view it again.
There is a script on GitHub to open the link to download the entire course. It is very convenient to use. The method is as follows.
Because this script uses multiple Python libraries, it is best to use the Linux system. I use Debian Wheezy and python2.7.3. Of course, you need a
Label: Ar c working time r as Rom net 5CATEGORY first, 1. skill category; 2. improvement category; 3. Interest category.I have completed the first six courses of Andrew Ng ml, UW computer network, and dataset cience on Coursera.In the future, the service will be guaranteed to be 25 hours a week, with an average of 2.5-3 hours per working day and 11 hours on weekends. In this way, three courses can be conducted at the same time in less than ten weeks, it also needs to be arranged according to the
Coursera-getting and Cleaning Data-week4Thursday, January,Make up the fourth week notes, and this course summary.The four-week course focuses on text processing. Inside includes1. Handling of variable names 2. Regular Expression 3. Date processing (see Swirl lubridate package exercise)First, the processing of variable names, followed by two principles, 1) uniform case tolower/toupper;2) Remove the import data, because special characters caused by the
Tensorflow creates variables and searches for variables by name. tensorflow Variables
Environment: Ubuntu14.04, tensorflow = 1.4 (bazel source code installation), Anaconda python = 3.6
There are two main methods to declare variables:Tf. VariableAndTf. get_variable, The biggest difference between the two is:
(1) tf. Variable is a class with many attribute function
Use tensorflow to implement the elastic network regression algorithm and tensorflow Algorithm
This article provides examples of tensorflow's implementation of the elastic network Regression Algorithm for your reference. The specific content is as follows:
Python code:
# Using tensorflow to implement an elastic network algorithm (multi-variable) # using the iris d
TensorFlow realize Classic Depth Learning Network (4): TensorFlow realize ResNet
ResNet (Residual neural network)-He Keming residual, a team of Microsoft Paper Networks, has successfully trained 152-layer neural networks using residual unit to shine on ILSVRC 2015 , get the first place achievement, obtain 3.57% top-5 error rate, the effect is very outstanding. The structure of ResNet can accelerate the tra
would the Vectorize this code to run without all for loops? Check all the Apply.
A: v = A * x;
B: v = Ax;
C: V =x ' * A;
D: v = SUM (A * x);
Answer: A. v = a * x;
v = ax:undefined function or variable ' Ax '.
4.Say you has a vectors v and Wwith 7 elements (i.e., they has dimensions 7x1). Consider the following code:
z = 0;
For i = 1:7
Z = z + V (i) * W (i)
End
Which of the following vectorizations correctly compute Z? Check all the Apply.
(w ')Description W over fitting3 Sources of errorNoise, Bias, Variance1. Noise NoiseOf an inherent, irreducible, or reduced nature. 2, Bias Deviation The simpler the model, the greater the deviation The more complex the model, the smaller the deviation3. Variance Variance Simple model, small variance Complex model, large variance Deviations and variance tradeoffs, deviations and variances cannot be calculated Training error and the amount of test data, fixed model complexity, a
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.