function and map the given set to another set. The signature is as follows:
def map(s: Set, f: Int => Int): Set
The second parameter f is used to map the elements of the original set to the functions of the new set (first-class citizen !)
The question looks simple, just to judge whether the elements in s are equal to the input integer after f ing.
This includes two steps:
1. Is there any element in s that meets a specific condition (assertion )?
2. The specific condition (assertion) is mapped t
, i.e., all of our training examples lie perfectly on some straigh T line.
If J (θ0,θ1) =0, that means the line defined by the equation "y=θ0+θ1x" perfectly fits all of our data.
For the To is true, we must has Y (i) =0 for every value of i=1,2,..., m.
So long as any of our training examples lie on a straight line, we'll be able to findθ0 andθ1 so, J (θ0,θ1) =0. It is not a necessary that Y (i) =0 for all of our examples.
We can perfectly predict the value o
-Learning RateIn the gradient descent algorithm, the number of iterations required for the algorithm convergence varies according to the model. Since we cannot predict in advance, we can plot the corresponding graphs of iteration times and cost functions to observe when the algorithm tends to converge.Of course, there are some ways to automatically detect convergence, for example, we compare the change value of a cost function with a predetermined threshold, such as 0.001, to determine convergen
-Gradient descent for linear regressionHere we apply the gradient descent algorithm to the linear regression model, we first review the gradient descent algorithm and the linear regression model:We then expand the slope of the gradient descent algorithm to the partial derivative:In most cases, the linear regression model cost function is shaped like a convex body, so the local minimum value is equivalent to the global minimum:The following is the entire convergence and parameter determination pr
-Gradient descentThe gradient descent algorithm is an algorithm for calculating the minimum value of a function, and here we will use the gradient descent algorithm to find the minimum value of the cost function.The idea of a gradient descent is that we randomly select a combination of parameters and calculate the cost function at the beginning, and then we look for the next combination of parameters that will reduce the value of the cost function.We continue this process until a local minimum (
use of MATLAB. *.4.gradientdescent.mfunction [Theta, j_history] =gradientdescent (X, y, theta, Alpha, num_iters)%gradientdescent performs gradient descent to learn theta% theta = gradientdescent (X, y, theta, Alpha, num_iters) up Dates theta by% taking num_iters gradient steps with learning rate alpha% Initialize Some useful valuesm= Length (y);%Number of training examplesj_history= Zeros (Num_iters,1); forITER =1: Num_iters% ====================== YOUR CODE here ======================% instru
Overview
photo OCR
problem Description and Pipeline
sliding Windows
getting Lots of data and Artificial data
ceiling analysis:what part of the Pipeline to work on Next
Review
Lecture Slides
Quiz:Application:Photo OCR
Conclusion
Summary and Thank You
Log
4/20/2017:1.1, 1.2;
Note
Ocr?
...
Coursera-machine Learning, Stanford:w
I've been procrastinating for the last time, and I'm going to keep it up today.
Programming Title #: Calculating the sum of the edge elements of a matrix
Source: POJ (Coursera statement: The exercises completed on POJ will not be counted into Coursera's final results. )
Note: Total time limit: 1000ms memory limit: 65536kB description
Enter an integer matrix to compute the sum of elements at the edge of the matrix. The elements of the so-called matrix
Jia-bin Huang collection of children's shoes. This shoes graduated from the National Jiao Tong University and has previously taken many photos of the cvpr venue in Colorado. Most of them are Matlab code,
Link:
First, how to learn a large-scale data set?In the case of a large training sample set, we can take a small sample to learn the model, such as m=1000, and then draw the corresponding learning curve. If the model is found to be of high deviation
Welcome and Introductionoverviewreadinglog
9/9 videos and quiz completed;
10/29 Review;
Note1.1 Welcome
1) What are machine learning?
Machine learning are the science of getting compters to learn, without being
II. Linear Regression with one Variable (Week 1)-Model representationIn the case of previous predictions of house prices, let's say that our training set of regression questions (Training set) looks like this:We use the following notation to
This week's programming work is mainly two-part content.1.k-means Clustering.2.PCA (Principle Component analys) principal component analysis.The main method is to compress the image by clustering the image, and then it is found that PCA can compress
Gradient descent algorithm minimization of cost function J gradient descent
Using the whole machine learning minimization first look at the General J () function problem
We have J (θ0,θ1) we want to get min J (θ0,θ1) gradient drop for more general
Neural networks:learning
Last week's course learned the neural network forward propagation algorithm, this week's course mainly lies in the neural network reverse renewal process. 1.1 Cost function
Let's recall the value function of logistic
Deep Learning & art:neural Style Transfer
Welcome to the second assignment of this week. In this assignment, you'll learn about neural Style Transfer. This algorithm is created by Gatys et al. (https://arxiv.org/abs/1508.06576).
in this assignment,
5.1 Section cost FunctionThe cost function of a neural network.Review some of the concepts in neural networks:L the total number of layers of the neural network.Number of units of the SL-L layer (excluding deviation units).Category 2 Classification
You can access the Google drive containing all of the current and in-progress lecture slides for this course through the L Ink below.
Lecture Slides
You could find it helpful to either bookmark this page or download the slides for easy
You can access the Google drive containing all of the current and in-progress lecture slides for this course through the L Ink below.
Lecture Slides
You could find it helpful to either bookmark this page or download the slides for easy
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.