coursera

Read about coursera, The latest news, videos, and discussion topics about coursera from alibabacloud.com

Coursera Machine Learning Study notes (vii)

-Gradient descent for linear regressionHere we apply the gradient descent algorithm to the linear regression model, we first review the gradient descent algorithm and the linear regression model:We then expand the slope of the gradient descent algorithm to the partial derivative:In most cases, the linear regression model cost function is shaped like a convex body, so the local minimum value is equivalent to the global minimum:The following is the entire convergence and parameter determination pr

Coursera Machine Learning Study notes (vi)

-Gradient descentThe gradient descent algorithm is an algorithm for calculating the minimum value of a function, and here we will use the gradient descent algorithm to find the minimum value of the cost function.The idea of a gradient descent is that we randomly select a combination of parameters and calculate the cost function at the beginning, and then we look for the next combination of parameters that will reduce the value of the cost function.We continue this process until a local minimum (

Coursera algorithm two week 4 boggle

) - { + returnS.charat (d)-' A '; A } at - PrivateNode put (node x, String key,intd) - { - if(x = =NULL) x =NewNode (); - if(d = =key.length ()) - { inX.hasword =true; - returnx; to } + intc =charAt (key, D); -X.next[c] = put (x.next[c], key, d+1); the returnx; * } $ Panax Notoginseng Public Booleancontains (String key) - { theNode x = Get (root, key, 0); + if(x = =NULL)return false;

Coursera Machine Learning second week programming job Linear Regression

.*h);% =========================================================================EndFormula:Note the use of MATLAB. *.4.gradientdescent.mfunction [Theta, j_history] =gradientdescent (X, y, theta, Alpha, num_iters)%gradientdescent performs gradient descent to learn theta% theta = gradientdescent (X, y, theta, Alpha, num_iters) up Dates theta by% taking num_iters gradient steps with learning rate alpha% Initialize Some useful valuesm= Length (y);%Number of training examplesj_history= Zeros (Num_it

Coursera-machine Learning, Stanford:week 11

Overview photo OCR problem Description and Pipeline sliding Windows getting Lots of data and Artificial data ceiling analysis:what part of the Pipeline to work on Next Review Lecture Slides Quiz:Application:Photo OCR Conclusion Summary and Thank You Log 4/20/2017:1.1, 1.2; Note Ocr? ... Coursera-machine Learning, Stanford:w

The sum of the edge elements of the matrix in Coursera C language Advanced exercise calculation

I've been procrastinating for the last time, and I'm going to keep it up today. Programming Title #: Calculating the sum of the edge elements of a matrix Source: POJ (Coursera statement: The exercises completed on POJ will not be counted into Coursera's final results. ) Note: Total time limit: 1000ms memory limit: 65536kB description Enter an integer matrix to compute the sum of elements at the edge of the matrix. The elements of the so-called matrix

UIUC University Coursera Course text retrieval and Search Engines:week 3 Quiz_uiuc University

Week 3 Quizhelp Center Warning:the hard deadline has passed. You can attempt it, but and you won't be. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify this answers here are I own work. Question 1 Assume you are using a Unigram language model to calculate the probabilities of phrases. Then, the probabilities of generating the phrases "study text mining" and "text mining study" are not equal, i

UIUC University Coursera Course text retrieval and Search Engines:week 3 Practice University

Week 3 Practice quizhelp Center Warning:the hard deadline has passed. You can attempt it, but and you won't be. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify this answers here are I own work. Question 1 are given a vocabulary composed of only three words: "text", "mining", and "the". Below are the probabilities of two of this three words given by a Unigram model: Word Probability Text 0.4 M

Coursera Machine Learning 5th Chapter Neural Networks:learning Study notes

5.1 Section cost FunctionThe cost function of a neural network.Review some of the concepts in neural networks:L the total number of layers of the neural network.Number of units of the SL-L layer (excluding deviation units).Category 2 Classification

Coursera course "Python Data structure" courseware

You can access the Google drive containing all of the current and in-progress lecture slides for this course through the L Ink below. Lecture Slides You could find it helpful to either bookmark this page or download the slides for easy

Coursera course "Everyone's python" (Python for Everyone) courseware

You can access the Google drive containing all of the current and in-progress lecture slides for this course through the L Ink below. Lecture Slides You could find it helpful to either bookmark this page or download the slides for easy

Coursera Machine Learning Cornerstone 4th talk about the feasibility of learning

This section describes the core of machine learning, the fundamental problem-the feasibility of learning. As we all know about machine learning, the ability to measure whether a machine learning algorithm is learning is not how the model behaves on

Coursera Machine Learning Techniques Course Note 01-linear Hard SVM

Extremely light of a semester finally passed, summer vacation intends to learn the big step down this machine learning techniques.The first lesson is the introduction of SVM, although I have learned it before, but I heard a feeling is very rewarding.

Coursera Machine Learning Course note-Hazard of Overfitting

This section is about overfitting, listening to the understanding of overfitting more profound than before.First introduced the overfitting, the consequence is that Ein is very small, and eout is very large. Then the causes of overfitting are

Coursera Machine Learning Course note--regularization

This section is about regularization, in the optimization of the use of regularization, in class when the teacher a word, not too much explanation. After listening to this class,To understand the difference between a good university and a pheasant

Coursera Machine Learning Study notes (ix)

-Feature ScalingWhen we are faced with multidimensional feature problems, we need to ensure that the multidimensional features have similar scales, which will help the gradient descent algorithm to converge faster.Take the housing price forecast

Coursera Machine Learning Study notes (v)

-Cost functionFor the training set and our assumptions, we will consider how to determine the coefficients in the assumptions.What we are going to do now is to choose the right parameters, and the selection of parameters directly affects the

Coursera Machine Learning Study notes (13)

Vi. Logistic Regression (Week 3)-ClassificationIn the classification problem, what we try to predict is whether the result belongs to a certain class (for example, correct or error). Examples of classification problems include determining whether an

Coursera public class-machine_learing: Programming Job 8 (2016-10-06 20:49)

Anomaly Detection and Recommender SystemsThis week's programming job is divided into two parts: anomaly detection and referral system.Anomaly Detection: The essence is to use the Gaussian distribution of the sample to the special value to estimate

Coursera Machine Learning-fourth week-neural network Forwardpropagation

The origin of Neural network Considering a nonlinear classification, when the number of features is very small, the logical regression can be completed, but when the feature number becomes larger, the higher order term will be exponential growth,

Total Pages: 15 1 .... 4 5 6 7 8 .... 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.