Machine learning Types
Machine Learning Model Evaluation steps
Deep Learning data Preparation
Feature Engineering
Over fitting
General process for solving machine learning problems
Machine Learning Four Br
Deep Learning thesis notes (8) Latest deep learning Overview
Zouxy09@qq.com
Http://blog.csdn.net/zouxy09
I have read some papers at ordinary times, but I always feel that I will slowly forget it after reading it. I did not seem to have read it again one day. So I want to sum up some useful knowledge points in my thesi
theoretical knowledge : UFLDL data preprocessing and http://www.cnblogs.com/tornadomeet/archive/2013/04/20/3033149.htmlData preprocessing is a very important step in deep learning! If the acquisition of raw data is the most important step in deep learning, then the preprocessing of the raw data is an important part of
In the words of Russian MYC although is engaged in computer vision, but in school never contact neural network, let alone deep learning. When he was looking for a job, Deep learning was just beginning to get into people's eyes.
But now if you are lucky enough to be interviewed by Myc, he will ask you this question
models on a variety of platforms, from mobile phones to individual cpu/gpu to hundreds of GPU cards distributed systems.
From the current documentation, TensorFlow supports the CNN, RNN, and lstm algorithms, which are the most popular deep neural network models currently in Image,speech and NLP.
This time Google open source depth learning system TensorFlow can be applied in many places, such as speech reco
[Introduction to machine learning] Li Hongyi Machine Learning notes-9 ("Hello World" of deep learning; exploring deep learning)
PDF
Video
Keras
Example appl
9. Common models or methods of deep learning
9.1 autoencoder automatic Encoder
One of the simplest ways of deep learning is to use the features of artificial neural networks. Artificial Neural Networks (ANN) itself are hierarchical systems. If a neural network is given, let's assume that the output is the same as the i
Written before:
busy, always in a walk stop, squeeze time, leave a chance to think.
Intermittent, the study of deep learning also has a period of time, from the beginning of the small white to now is a primer, halfway to read a little article literature, there are many problems. The trip to Takayama has only just begun, and this series is designed to record the path and individual
Deep Learning Book recommendation, deep learning bookAI Bible
Classic best-selling book in the field of deep learning! Has long ranked first in Amazon AI and machine learning boo
This section mainly introduces a deep learning MATLAB version of the Toolbox, Deeplearntoolbox
The code in the Toolbox is simple and feels more suitable for learning algorithms. There are common network structures, including deep networks (NN), sparse self-coding networks (SAE), CAE, depth belief networks (DBN) (based
a larger new dataset that can be adjusted.
Image datasets are larger than 200x10.
A complex network structure requires more training sets.
Be careful about fitting.
References 1. cs231n convolutional neural Networks for Visual recognition 2. TensorFlow convolutional Neural Networks 3. How to Retrain Inception's Final Layer for New Categories 4. K-nn Classifier for image classification 5. Image augmentation for Deep
-depth learning model Framework:In the offline phase, we use the theano, tensorflow-based Keras as the model ENGINE. At the time of training, we separately cleaned and weighted the sample Data. In terms of features, we use the Min-max method for normalization of continuous features. In terms of cross-features, we combine business requirements to refine multiple cross-features that are more significant in bu
Closure of Python deep learning and deep learning of python
Closure is an important syntax structure for functional programming. Functional programming is a programming paradigm (both process-oriented and object-oriented programming are programming paradigms ). In process-oriented programming, we have seen functions; i
Transferred from: http://blog.csdn.net/zouxy09/article/details/8775518
Well, to this step, finally can talk to deep learning. Above we talk about why there are deep learning (let the machine automatically learn good features, and eliminate the manual selection process. As well as a hierarchical visual processing system
Connect
9. Common models or methods of Deep Learning
9.1 AutoEncoder automatic Encoder
One of the simplest ways of Deep Learning is to use the features of artificial neural networks. Artificial Neural Networks (ANN) itself are hierarchical systems. If a neural network is given, let's assume that the output is the same
(DBN.RBM); Training for each layer of RBM Dbn.rbm{1} = Rbmtrain (Dbn.rbm{1}, X, opts); For i = 2:n x = Rbmup (Dbn.rbm{i-1}, x); Dbn.rbm{i} = Rbmtrain (Dbn.rbm{i}, X, opts); EndEndThe first thing to be greeted is the first layer of the Rbmtrain (), after each layer before train used Rbmup, Rbmup is actually a simple sentence Sigm (Repmat (RBM.C ', size (x, 1), 1) + x * RBM. W '); That is, the graph above is calculated from V to H, and the formula is Wx+cThe following a
250 CPU servers.NVIDIA Tesla? P100 Accelerator.First video card with Pascal architectureOwns 18 billion transistorsUsing NVIDIA Nvlink?Manufacturing process using 16nm FinFETThe Tesla P100 is not only the most powerful GPU accelerator today,It's also the most technologically advanced GPU chip.Distributed deep learning system for DatainsightBased on the TensorFlow distributed version of the scenario, the CP
Main Content: Spotify is a music website similar to cool music. It provides personalized music recommendations and music consumption. The author uses deep learning combined with collaborative filtering for music recommendation.
Details:
1. Collaborative Filtering
Basic principle: two users listen to similar songs, indicating that the two users are interested and have similar tastes. A group of two songs are
Connect
Because we want to learn the expression of features, we need to know more about features or hierarchical features. So before we talk about deep learning, we need to explain the features again (haha, we actually see such a good explanation of the features, but it is a pity that we don't put them here, so we are stuck here ).
Iv. Features
Features are the raw material of the machine
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.