df iloc

Learn about df iloc, we have the largest and most updated df iloc information on alibabacloud.com

Python code instance for cdn log analysis through pandas library

FalseHangzhou FalseShanghai FalseSuzhou True An important feature of Series is to automatically align data with different indexes in data operations. In [24]: obj3Out[24]: Beijing 40000Hangzhou 30000Nanjing 26000Shanghai 35000In [25]: obj4Out[25]: Beijing 40000.0Hangzhou 30000.0Shanghai 35000.0Suzhou NaNIn [26]: obj3 + obj4Out[26]: Beijing 80000.0Hangzhou 60000.0Nanjing NaNShanghai 70000.0Suzhou NaN The index of Series can be modified locally through replication. In [27]: obj.index = ['Bob',

Pandas series DataFrame row and column data filtering, pandasdataframe

index-feature name-Attribute-easy to understand 2. filter the row and column data of dataframe import pandas as pd,numpy as npfrom pandas import DataFramedf = DataFrame(np.arange(20).reshape((4,5)),column = list('abcde')) 1. df [] df. Select column data Df.Df [['A', 'B'] 2. df. loc [[index], [colunm] use tags to select data When you do not filter rows, enter "

Python's Pandas Library

,how=‘left‘) #df_right=pd.merge(df,df1,how=‘right‘)df_outer=pd.merge(df,df1,how=‘outer‘) #并集2. Set the index columndf_inner.set_index(‘id‘)3. Sort by the value of a specific column:df_inner.sort_values(by=[‘age‘])4. Sort by index column:df_inner.sort_index()5. If the value >3000,group column of the Prince column shows high, the low is displayed:df_inner[‘group‘] = np.where(df_inner[‘price‘] > 3000,‘

Using Python to work with Excel data __python

', ' 110 ') Replace Data preprocessing Sort the data Df.sort_values (by=[' The number of messages sent by the customer on the Day ']) Sort PivotTable report in data grouping --excel* * Group Customer chat Records #如果price列的值 >3000,group column shows high, otherwise show low df[' group ' = Np.where (df[' customer sends messages on the day '] > 5, ' High ', ' low ') D

Python Padas Learning

= s.loc[' Item-id ' #按索引选取数据show = Df.sample (frac=0.5) #按比例随机采样show = Df.sample (N=len (DF)) #指定采样个数" "#construct dataframe Data yourselfDF = PD. DataFrame ([[1,2,3],[4,5,6]],columns=['F1','F2','f3'])#columns is a column indexDF = PD. DataFrame ([{'User-id':'User 1','Item-id': 1},{'User-id':'User 2'}])#construct by RowDF = PD. DataFrame ({'user_id':['Line 1','Line 1','Line 3'],'item_id':['Item 1','Item 2','Item 3'],'test_id': [12,11,4]})#construct b

Python array,list,dataframe Index Tile Operation July 19, 2016--smart wave document

),(2,1),(2,2)]#拿第一个逗号分割的数据,在进行第二维操作,到2结束的列,输入如下array([[3, 4], [6, 7]])Based on the understanding of stepping slices, the two-and three-dimensional are equally well understood and not as complicated as steppingYou can also copy the elements of a slice>>> b[1:,:2] = 1 #广播赋值>>> barray([[0, 1, 2], [1, 1, 5], [1, 1, 8]])>>> b[1:,:2].shape(2L, 2L)>>> b[1:,:2] = np.arange(2,6).reshape(2,2) #对应赋值>>> barray([[0, 1, 2], [2, 3, 5], [4, 5, 8]])Three-dimensional, the same is seq

Python pandas common functions, pythonpandas

the last M resultsA two-dimensional array of df. values, which is returned as a numpy. ndarray object.The index of df. index DataFrame. The index cannot be directly assigned with a value.Df. reindex (index = ['row1', 'row2',...]Columns = ['col1', 'col2',...]) reorder based on the new indexDf [m: n] slice, select m ~ N-1 rowsDf [df ['col1']> 1] Select rows that m

Pandas+dataframe implementing row and column selection and slicing operations

operations Keyerror: ' None of [[2, 3]] is in the [columns] ' Print df.loc[[2, 3]]#.loc can be selected without a column name. Sex tip total_bill2 Male 3.50 23.683 Male 3.31 23.68 Print Df.iloc[1:3]#.iloc can be the row selection without adding the first column Sex tip total_bill1 Male 1.66 10.342 Male 3.50 23.68 Print Df.iloc[1:3, ' tip ': ' Total_bill '] Typeerror:cannot do slice indexing on Print df.at[3, ' Tip ']print df.iat[3, 1

Pandas dataframe data frame

', DF ['v1']) #2 indicates the insert position, and V6 indicates the column name, DF ['v1 '] is the inserted value print ('insert column:') print (DF, '\ n') print (' * 50) 4. General selection methods: Operation Method Method Result Select a column Def [col] Sequence Select a row using column tags

Pandas and table processing

Query Write operations Pandas can have powerful query functions like SQL and is simple to do: printtips[[' Total_bill ', ' tip ', ' smoker ', ' time ']] #显示 ' total_bill ', ' tip ', ' Smoker ', ' time ' column, functionally similar to the Select command in SQL printtips[tips[' time ']== ' Dinner ']# Displays data equal to dinner in the time column, functionally similar to the where command in SQL printtips[(tips[' size ']>=5) | (tips[' Total _bill ']>45)]printtips[(tips[' time ']== ' Dinner ')

Organize pandas operations

value df.pivot_table (Index=col1, values=[col2,col3], Aggfunc=max) for column col2 after grouping by column col1 : Create a pivot table Df.groupby (col1) that groups col1 by column and calculates the maximum values for col2 and col3 . Agg (Np.mean): Returns the mean value of all columns grouped by column col1 ( Np.mean): Apply function Np.mean data.apply (Np.max,axis=1) to each column in Dataframe : Apply function to each row in Dataframe Np.max Other operations: Change column name: Method 1

Python code instance for analyzing CDN logs through the Pandas library

7jeff-5ryan 3 DataFrame Pandas reading files in [+]: df = pd.read_table (' pandas_test.txt ', sep= ', names=[' name ', ' age ')) in [+]: dfout[30]: name age0 Bob 261 Loy A 222 Denny 203 Mars 25 Dataframe Column Selection Df[name] In [to]: df[' name ']out[31]: 0 Bob1 Loya2 Denny3 marsname:name, Dtype:object Dataframe Row Selection Df.iloc[0,:] #第一个参数是第几行, the se

Analysis of CDN logs through the Pandas library in Python

Row Selection Df.iloc[0,:] #第一个参数是第几行, the second argument is a column. This refers to row No. 0 all columns df.iloc[:,0] #全部行, No. 0 column in [+]: df.iloc[0,:]out[32]: Name Bobage 26name:0, Dtype:objectin [all]: df.iloc[:,0]out[33]: 0 Bob1 Loya2 Denny3 Marsna Me:name, Dtype:object Gets an element that can be iloc, faster by the IAT In [the]: df.iloc[1,1]out[34]: 22In []: df.iat[1,1]out[35]: 22 Dataframe Block Selection In [approx]: df.loc[1:2,[' na

Learning Pandas (IV.)

3 6 H 7 3 7 I 8 3 8 J 9 3 9 By using *loc, we can select some of the data in the Dataframe. Df.loc[' a '] Rev. 0 Test 3 col 0 name:a, Dtype:int64 # df.loc[starting index (included): Terminating index (inclusive)] df.loc[' a ': ' d '] Rev Test Col A 0 3 0 B 1 3 1 C 2 3 2

Python data processing tools using method collation

the Dataframe>>>np.sign (DF)>>> last_col=df.columns[-1]>>>np.sign (Df[last_col])#Head (take the first few lines) and tail (take a few lines)>>> Df.head (2)>>> Df.tail (2)#find a row of data by index>>> last_col=df.index[-1]>>>Last_col>>>Df.iloc[last_col]#find a column of data for a row by index>>> Df.iloc[2:9]#Iloc and IAT function the same>>> df.iloc[2,3]>>> df

25th Month 7th Day Poly-width SVM

). Strftime ('%y-%m-%d ') P2=get_price (Index[each] , start_date=p1_30d, end_date=p1_30d, frequency= ' daily ', fields= ' close ') if not p2.empty: Pass ELSE:DATE_STAMP2 = Datetime.strptime (p1_30d, '%y-%m-%d ') unix2=time.mktime (date_stamp 2.timetuple ()) Unix2_weekend=unix2-unix_weekend P2_weekend=datetime.fromtimestamp (unix2_weekend). Str Ftime ('%y-%m-%d ') P2=get_price (Index[each], start_date=p2_weekend, end_date=p2_weekend, frequency= ' Daily ', fields= ' close ')

R to the day of Python (i)

use anonymous functions5 column names1 Df.columns2Df.columns = ['a','b','C','e','D','F']# Renaming3Df.rename (columns = {'A':'AA','B':'BB','C':'cc','D':'DD','E':'ee','F':'FF'}, Inplace=True)4Df.rename (columns=LambdaX:x[1:].upper (), inplace=true)#You can also use the function inplace parameter to replace the original variable, the deep copy6 Dummy Variable Dummy variables1 PD. Series (['a|b'a|c']). Str.get_dummies ()7 Pure DF Matrix, i.e. does not c

"Python Data Analysis" Note--pandas

PandasPandas is a popular open source Python project that takes the name of panel data and Python data analysis.Pandas has two important data structures: Dataframe and seriesThe dataframe of PANDAS data structurePandas's DATAFRAME data structure is a tagged two-dimensional object that is very similar to Excel spreadsheets or relational data tables.You can create dataframe in the following ways:1. Create a dataframe from another dataframe2. Generate Dataframe from a numpy array with two-dimension

How to iterate the rows of Pandas Dataframe

from:76713387How to iterate through rows in a DataFrame in pandas-dataframe by row iterationHttps://stackoverflow.com/questions/16476924/how-to-iterate-over-rows-in-a-dataframe-in-pandasHttp://stackoverflow.com/questions/7837722/what-is-the-most-efficient-way-to-loop-through-dataframes-with-pandasWhen it comes to manipulating dataframe, we inevitably need to view or manipulate the data row by line, so what's the efficient and fast way to do it?Index ordinalimport pandas as pdinp = [{‘c1‘:10, ‘c2

Python's simple tutorial for data analysis _python

Recently, analysis and programming joined Planet Python. As the first of its special blogs, I'm here to share how to start data analysis through Python. The specific contents are as follows: Data importImport a local or web-side CSV file;Data transformation;Data statistics description;Hypothesis TestingSingle sample t test;visualization;Create a custom function. Data import This is a critical step, and for subsequent analysis we first need to import the data. In general, the data is in CSV

Total Pages: 15 1 .... 11 12 13 14 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.