Recently, the Google deep Mind team put forward a machine learning model, and a particularly tall on the name: Neural network Turing machine, I translated this article for everyone, translation is not particularly good, some sentences did not read clearly, welcome everyone to criticize
Original paper Source: Http://arxiv.org/pdf/1410.5401v1.pdf.All rights reserved, prohibited reprint.
UFLDL Learning notes and programming Jobs: convolutional neural Network (convolutional neural Networks)UFLDL out a new tutorial, feel better than before, from the basics, the system is clear, but also programming practice.In deep learning high-quality group inside listen to some predecessors said, do not delve into other machine learning algorithms, you can direc
Part five The second model: convolutional neural NetworksDemonstrates the convolution operationLeNet-5-type convolutional neural network is the core of the great breakthrough in the field of computer vision recently. The convolution layer differs from the previous fully connected layer by using some techniques to avoid excessive number of parameters, but preserve
Specific principle website: http://wenku.baidu.com/link?url=zSDn1fRKXlfafc_ Tbofxw1mtay0lgth4gwhqs5rl8w2l5i4gf35pmio43cnz3yefrrkgsxgnfmqokggacrylnbgx4czc3vymiryvc4d3df3Self-organizing feature map neural network (self-organizing Feature map. Also called Kohonen Mapping), referred to as the SMO network, is mainly used to solve the problem of pattern recognition cla
If you use 100k batch in this model, and combine the decay of learning rate (that is, the rate of learning is reduced by a ratio every once in a while), the correct rate can be as high as 86%. There are about 1 million parameters to be trained in the model, and the total amount of arithmetic to be estimated is about 20 million times. So this convolution neural network model, using some techniques.(1) Regula
1 Introduction
An XOR operation is a commonly used calculation in a computer:
0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0
We can use the code in the first article to calculate this result Http://files.cnblogs.com/gpcuster/ANN1.rar (need to modify the training set), we can find that the results of learning does not satisfy us, because the single layer of neural network learning ability is limited ,
Here is the [1] derivation of the BP algorithm (backpropagation) steps to tidy up, memo Use. [1] the direct use of the matrix differential notation is deduced, the whole process is very concise. And there is a very big advantage of this matrix form is that it is very convenient to implement the programming Control.But its practical scalar calculation deduction also has certain advantages, for example, can clearly know that a weight is affected by who.Marking Conventions:$L $: The number of layer
End-to-end neural network MT (end-to-end Neural machine translation) is a new method of machine translation emerging in recent years. In this paper, we will briefly introduce the traditional method of statistical machine translation and the application of neural network in m
I've been focusing on CNN implementations for a while, looking at Caffe's code and Convnet2 's code. At present, the content of the single-machine multi-card is more interested, so pay special attention to Convnet2 about MULTI-GPU support.where Cuda-convnet2 's project address is published in: Google Code:cuda-convnet2A more important paper on MULTI-GPU is: one weird trick for parallelizing convolutional neural NetworksThis article will also give an a
In the deep network, the learning speed of different layers varies greatly. For example: In the back layer of the network learning situation is very good, the front layer often in the training of the stagnation, basically do not study. In the opposite case, the front layer learns well and the back layer stops learning.This is because the gradient descent-based learning algorithm inherently has inherent inst
1. Some basic symbols2.COST function================backpropagation algorithm=============1. To calculate something 2. Forward vector graph, but in order to calculate the bias, it is necessary to use the backward transfer algorithm 3. Backward transfer Algorithm 4. Small topic ======== ======backpropagation intuition==============1. Forward calculation is similar to backward calculation 2. Consider only one example, cost function simplification 3. Theta =======implementation Note:unrolling param
In the previous article "Artificial Neural Network (Artificial neural netwroks) Notes-Eliminate the sample order of the BP algorithm" to modify the weight of the method is called the "steepest descent method." Every time the weight of the changes are determined, the weight will be modified. Even to the simplest single layer perceptron.
But we have a question, wh
UFLDL Learning notes and programming Jobs: multi-layer neural Network (Multilayer neural networks + recognition handwriting programming)UFLDL out a new tutorial, feel better than before, from the basics, the system is clear, but also programming practice.In deep learning high-quality group inside listen to some predecessors said, do not delve into other machine l
Overview
This is the last article in a series on machine learning to predict the average temperature, and as a last article, I will use Google's Open source machine learning Framework TensorFlow to build a neural network regression. About the introduction of TensorFlow, installation, Introduction, please Google, here is not to tell.
This article I mainly explain several points: Understanding artificial
Http://blog.sina.com.cn/s/blog_98238f850102w7ik.htmlAll the current Ann neural network algorithm Daquan(2016-01-20 10:34:17)reproduced
Tags: it
Overview1 BP Neural network1.1 Main functions1.2 Advantages and Limitations2 RBF (radial basis function) neural network2.1 Main functions2.2
All the current Ann neural network algorithm DaquanOverview1 BP Neural network1.1 Main functions1.2 Advantages and Limitations2 RBF (radial basis function) neural network2.1 Main functions2.2 Advantages and Limitations3 Sensor Neural Network3.1 Main functions3.2 Advantages a
This is an extension of the discrete single output perceptron algorithm
Related symbolic definitions refer to the artificial neural network (Artificial neural netwroks) Note-discrete single output perceptron algorithm
Ok,start our Game
1. Initialization weight matrix W;
2. Repeat the following process until the training is complete:
2.1 For each sample (X,y)
Summary:On March 13, 2018, the Shen Junan community, from Harbin Institute of Technology, shared a typical model-an introduction to deep neural networks. This paper introduces the development course of deep neural network in detail, and introduces the structure and characteristics of each stage model in detail.The Shen Junan of Harbin Institute of Technology shar
Recently in the study of Artificial neural network (Artificial neural netwroks), make notes, organize ideas
Discrete single output perceptron algorithm, the legendary MP
Two-valued Network: The value of the independent variable and its function, the value of the vector component only takes 0 and 1 functions, vectors
+ b.tC. C = a.t + bD. C = a.t + b.t9. Please consider the following code: C results? (If you are unsure, run this lookup in Python at any time). AA = Np.random.randn (3, 3= NP.RANDOM.RANDN (3, 1= a*bA. This will trigger the broadcast mechanism, so B is copied three times, becomes (3,3), * represents the matrix corresponding element multiplied, so the size of C will be (3, 3)B. This will trigger the broadcast mechanism, so B is duplicated three times, becomes (3, 3), * represents matrix multipli
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.