-Gradient descent for linear regressionHere we apply the gradient descent algorithm to the linear regression model, we first review the gradient descent algorithm and the linear regression model:We then expand the slope of the gradient descent algorithm to the partial derivative:In most cases, the linear regression model cost function is shaped like a convex body, so the local minimum value is equivalent to the global minimum:The following is the entire convergence and parameter determination pr
-Gradient descentThe gradient descent algorithm is an algorithm for calculating the minimum value of a function, and here we will use the gradient descent algorithm to find the minimum value of the cost function.The idea of a gradient descent is that we randomly select a combination of parameters and calculate the cost function at the beginning, and then we look for the next combination of parameters that will reduce the value of the cost function.We continue this process until a local minimum (
use of MATLAB. *.4.gradientdescent.mfunction [Theta, j_history] =gradientdescent (X, y, theta, Alpha, num_iters)%gradientdescent performs gradient descent to learn theta% theta = gradientdescent (X, y, theta, Alpha, num_iters) up Dates theta by% taking num_iters gradient steps with learning rate alpha% Initialize Some useful valuesm= Length (y);%Number of training examplesj_history= Zeros (Num_iters,1); forITER =1: Num_iters% ====================== YOUR CODE here ======================% instru
Overview
photo OCR
problem Description and Pipeline
sliding Windows
getting Lots of data and Artificial data
ceiling analysis:what part of the Pipeline to work on Next
Review
Lecture Slides
Quiz:Application:Photo OCR
Conclusion
Summary and Thank You
Log
4/20/2017:1.1, 1.2;
Note
Ocr?
...
Coursera-machine Learning, Stanford:w
I've been procrastinating for the last time, and I'm going to keep it up today.
Programming Title #: Calculating the sum of the edge elements of a matrix
Source: POJ (Coursera statement: The exercises completed on POJ will not be counted into Coursera's final results. )
Note: Total time limit: 1000ms memory limit: 65536kB description
Enter an integer matrix to compute the sum of elements at the edge of the matrix. The elements of the so-called matrix
Week 3 Quizhelp Center
Warning:the hard deadline has passed. You can attempt it, but and you won't be. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify this answers here are I own work. Question 1 Assume you are using a Unigram language model to calculate the probabilities of phrases. Then, the probabilities of generating the phrases "study text mining" and "text mining study" are not equal, i
Week 3 Practice quizhelp Center
Warning:the hard deadline has passed. You can attempt it, but and you won't be. You are are welcome to try it as a learning exercise. In accordance with the Coursera Honor Code, I certify this answers here are I own work. Question 1 are given a vocabulary composed of only three words: "text", "mining", and "the". Below are the probabilities of two of this three words given by a Unigram model:
Word
Probability
Text
0.4
M
1. What is a special course (specializations)?If you want to learn a major that you do not understand, you can study according to the special course arrangement. Coursera Special Course collects a field of curriculum, and according to the Order of teaching, it is very suitable for the new people who don't feel well.2. Program Design and algorithmThis special course is a computer Foundation course published by Peking University in
(Datasets) data (IRIS)#Exploratory Analysisnames (Iris) head (IRIS)#The following attempts to take Virginica,speal. The method of length is all wrongiris[,2]iris[iris$species=="virginica", 2]mean (iris[iris$species=="virginica", 2])##the above is Error,not correct##tapply (Test$sepal.length,test$species,mean)#using Species.mean to group vectors, this method is feasible, but the above method is necessary to look at the errorLibrary (Datasets) data (Mtcars) #以下为做某个题时的若干测试. And a trial-and-error l
networks and overfitting:
The following is a "small" Neural Network (which has few parameters and is easy to be unfitted ):
It has a low computing cost.
The following is a "big" Neural Network (which has many parameters and is easy to overfit ):
It has a high computing cost. For the problem of Neural Network overfitting, it can be solved through the regularization (λ) method.
References:
Machine Learning video can be viewed or downloaded on Coursera
NTU-Coursera ml: HomeWork 1 Q15-20Question15
The training data format is as follows:
The input has four dimensions, and the output is {-1, + 1 }. There are a total of 400 data records.
The question requires that the weight vector element be initialized to 0, and then "Naive Cycle" is used to traverse the training set. When the iteration is stopped, the weight vector is updated several times.
The so-called "Naive Cycle" means that after an error i
This series is a personal learning note for Andrew Ng Machine Learning course for Coursera website (for reference only)Course URL: https://www.coursera.org/learn/machine-learning Exercise 7--k-means and PCA
Download coursera-Wunda-Machine learning-all programming practice answers
In this exercise, you will implement the K-means clustering algorithm and apply it to compressed images. In the second section, y
regression.
The root number can also be selected based on the actual situation.Regular Equation
In addition to Iteration Methods, linear algebra can be used to directly calculate $ \ matrix {\ Theta} $.
For example, four groups of property price forecasts:
Least Squares
$ \ Theta = (\ matrix {x} ^ t \ matrix {x}) ^ {-1} \ matrix {x} ^ t \ matrix {y} $Gradient Descent, advantages and disadvantages of regular equations Gradient Descent:
Desired stride $ \ Alpha $;
Multiple iterations are requ
Original title:Given Arrays a[] and b[], each containing n distinct 2D points in the plane, design a subquadratic algorithm to count The number of points that is contained both in array a[] and array b[].The goal of the topic is to calculate the number of duplicate point, very simple, the code is as follows1 ImportJava.awt.Point;2 Importjava.util.Arrays;3 ImportJava.util.HashSet;4 ImportJava.util.Set;5 6 ImportEdu.princeton.cs.algs4.StdRandom;7 8 Public classplanepoints {9 PrivatesetNewHash
]; - } - System.out.println (arrays.tostring (aux)); the intL = 0; - intR =N; - for(intk = 0; k){ - if(l >= N) Break;//The array of auxiliary elements is exhausted, and the right side of the array does not need to be shifted. + Else if(R>=2*n) array[k]=aux[l++];//all elements of the right element of array are placed in the appropriate position, then simply move the elements of the auxiliary array to the right of the array - Els
Before the machine learning is very interested in the holiday cannot to see Coursera machine learning all the courses, collated notes in order to experience repeatedly.I. Introduction (Week 1)-What's machine learningThere is no unanimous answer to the definition of machine learning.Arthur Samuel (1959) gives a definition of machine learning:Machine learning is about giving computers the ability to learn without explicit programming.Samuel designed a c
Support Vector MachinesI have the some issues to state. First, there were some bugs in original code which is caused by versions. I don ' t know ...There is three pictures u need to draw a division boundary. The first calls ' VISUALIZEBOUNDARYLINEAR.M ' which is fine and the others which call ' visualizeboundary.m ' can notDraw boundaries. So I check out this file and change the code ' contour (X1, X2, Vals, [0 0], ' Color ', ' B '); ' to ' Contour (X1, X2, Vals, [0.1 0.1], ' LineColor ', ' B ')
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.