The main content of this section:I. Data acceptance architecture and design patternsSecond, the acceptance of the data source interpretationSpark streaming continuously receives data, with receiver's spark application in mind.Receiver and driver in different processes, receiver to receive data after the continuous reporting to deriver.Because driver is responsible for scheduling, receiver received data if not reported to the Deriver,deriver dispatch w
0. DescriptionSpark cluster mode Spark JOB deployment mode1. Spark Cluster mode[Local]Simulating a Spark cluster with a JVM[Standalone]Start Master + worker process [Mesos]-- [Yarn]--2. Spark JOB Deployment Mode [Client]The Driver program runs on the client side. [Cluster]The Driver program runs on a worker.Spark-
Directory installation JDK installation Scala IDE for Eclipse configuration spark configuration Hadoop create Maven engineering Scala code entry 7 Item 8 Item 9
Installing the JDK
Requires installation of jdk1.8 or later.Back to Catalog
installing Scala IDE for Eclipse
There is no need to install Scala, the IDE is integrated.Official Download: http://scala-ide.org/download/sdk.htmlBack to Catalog
The first time I saw Spark crashSpark Shell Memory Oom phenomenonTo do the spark graph calculation, so with Google's web-google.txt, size 71.8MB.With the command:Val graph = Graphloader.edgelistfile (SC, "Hdfs://192.168.0.10:9000/input/graph/web-google.txt")When the diagram is established, the operation is returned to the console directly after half a day.Interface Xianscala> val graph = Graphloader.edgelis
1. Official website Download source code, address: http://spark.apache.org/downloads.html2. Use MAVEN to compile:Note Before you translate, you need to set the Java heap size and the permanent generation size to avoid MVN memory overflow.Under Windows Settings:%maven_home%\bin\mvn.cmd, place one of theAdd a row below this line of commentsSet maven_opts=-xmx2048m-xx:permsize=512m-xx:maxpermsize=1024mTo compile laterPackageWhen the compilation is complete, import the project into IntelliJFile->imp
Below is a look at the use of Union:Use the collect operation to see the results of the execution:Then look at the use of Groupbykey:Execution Result:The join operation is the process of a Cartesian product operation, as shown in the following example:To perform a join operation on RDD3 and RDD4:Use collect to view execution results:It can be seen that the join operation is exactly a Cartesian product operation;The reduce itself, which is an action-type operation in an RDD operation, causes the
the manager.For hash Based Shuffle, see Org.apache.spark.shuffle.FileShuffleBlockManager; for sort Based Shuffle, Please see Org.apache.spark.shuffle.IndexShuffleBlockManager.1.1.4 Org.apache.spark.shuffle.ShuffleReaderShufflereader implements the logic of how the downstream task reads the shuffle output of the upstream shufflemaptask. This logic is more complex, In simple terms, you get the location information of the data through Org.apache.spark.MapOutputTracker, and then if the data is loca
Run the example one by one to see the results illustrate Hadoop_home environment variablesOrg.apache.spark.examples.sql.hive.JavaSparkHiveExampleModify the run Configuration to add env hadoop_home=${hadoop_home}Run the Java class. After the hive example is exhausted, delete the metastore_db directory.Here's a simple way to run it one by oneEclipse->file->import->run/debug Launch ConfigurationBrowse to the Easy_dev_labs\runconfig directory. Import all.Now from Eclipse->run->run ConfigurationStart
The main contents of this section:first, Dstream and A thorough study of the RDD relationshipA thorough study of the generation of StreamingrddSpark streaming Rdd think three key questions:The RDD itself is the basic object, according to a certain time to produce the Rdd of the object, with the accumulation of time, not its management will lead to memory overflow, so in batchduration time after performing the Rdd operation, the RDD needs to be managed. 1, Dstream generate Rdd process, dstream in
The MAVEN components are as follows: org.apache.spark spark-streaming-kafka-0-10_2.11 2.3.0The official website code is as follows:Pasting/** Licensed to the Apache software Foundation (ASF) under one or more* Contributor license agreements. See the NOTICE file distributed with* This work for additional information regarding copyright ownership.* The ASF licenses this file to under the Apache License, Version 2.0* (the "License"); You are no
Spark Cluster preview:Official documentation for the spark cluster is described below, which is a typical master-slave structure:Official documentation provides detailed guidance on some of the key points in the spark cluster:The definition of its worker is as follows:It is important to note that the spark driver clust
I. The purpose of this articleStraggler is the hotspot of research, and there are straggler problems in spark. GC problem is one of the most important factors that lead to straggler, in order to understand the straggler problem caused by GC, we need to learn GC problem first and how to monitor the GC of Spark. GC issues are more discussed, and a series of articles is recommended for learning: to become a GC
Start Hadoop and start Spark.Build a simple test data customers.txt, for convenience, I put it in the Spark/bin directory:John Smith, Austin, TX, 78727200, Joe Johnson, Dallas, TX, 75201300, Bob Jones, Houston, TX, 77028400, Andy Davis, Sa n Antonio, TX, 78227500, James Williams, Austin, TX, 78727Start Spark-sql:./spark-sql.sh Map data into a database table:Load
Content:1, exactly what is page;2, page specific two ways to achieve;3, page of the use of the source of the detailed;What is page============ in ==========tungsten?1, in Spark in fact there is no page this class!!! In essence, page is a data structure (similar to stack, list, etc.), from the OS level, page represents a memory block in the page can store data, there are many different page in the OS, when to get the data, The first thing to do is to l
Tachyon is a killer Technology in the big data era and a technology that must be mastered in the big data era. With tachyon, distributed machines can share data based on the distributed memory file storage system built on tachyon. This is of extraordinary significance for Machine Collaboration, data sharing, and speed improvement of distributed systems; In this course, we will first start with the tachyon architecture, the tachyon architecture and startup principle, then carefully parse the ta
Thanks for the original link: https://www.jianshu.com/p/a1526fbb2be4
Before reading this article, please step into the spark streaming data generation and import-related memory analysis, the article is focused on from the Kafka consumption to the data into the Blockmanager of this line analysis.
This content is a personal experience, we use the time or suggest a good understanding of the internal principles, not to copy receiver evenly distributed to
When a task executes a commit failure, it retries, and the default retry count for the task is 4 times. def this (sc:sparkcontext) = This (SC, sc.conf.getInt ("Spark.task.maxFailures", 4)) (Taskschedulerimpl)(2) Add TasksetmanagerSchedulerbuilder (depending on the Schedulermode, FIFO is different from fair implementation) #addTaskSetManger方法会确定TaskSetManager的调度顺序, Then follow Tasksetmanager's locality aware to determine that each task runs specifically in that executorbackend. The default schedu
This lesson:
The use of Scala's implicit in the Spark source code
Scala's implicit programming operation combat
Scala's implicit enterprise-class best practices
The use of Scala's implicit in the Spark source codeThe meaning of this thing is very significant, the RDD itself does not have a key, value, but it is the time of its own interpretation into a key Value of the method to read,
You are welcome to reprint it. Please indicate the source, huichiro.Summary
There is nothing to say about source code compilation. For Java projects, as long as Maven or ant simple commands are clicked, they will be OK. However, when it comes to spark, it seems that things are not so simple. According to the spark officical document, there will always be compilation errors in one way or another, which is an
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.