hdinsight spark

Read about hdinsight spark, The latest news, videos, and discussion topics about hdinsight spark from alibabacloud.com

Big Data spark mushroom cloud prequel 16th: Scala implicits programming thorough combat and spark source appreciation (study notes)

This lesson: The use of Scala's implicit in the Spark source code Scala's implicit programming operation combat Scala's implicit enterprise-class best practices The use of Scala's implicit in the Spark source codeThe meaning of this thing is very significant, the RDD itself does not have a key, value, but it is the time of its own interpretation into a key Value of the method to read,

Apache Spark Source code reading 9 -- Spark Source code compilation

You are welcome to reprint it. Please indicate the source, huichiro.Summary There is nothing to say about source code compilation. For Java projects, as long as Maven or ant simple commands are clicked, they will be OK. However, when it comes to spark, it seems that things are not so simple. According to the spark officical document, there will always be compilation errors in one way or another, which is an

[Spark] [Python] [Application] Example of a non-interactive run of spark application

Examples of non-interactive running spark application$ cat count.pyImport SysFrom Pyspark import Sparkcontextif __name__ = = "__main__":sc = Sparkcontext ()LogFile = sys.argv[1]Count = Sc.textfile (logfile). Filter (Lambda line: '. jpg '). Count ()Print "JPG requests:", CountSc.stop ()$$ spark-submit--master yarn-client count.py/test/weblogs/*Number of JPG requests:10258$[

Learn Spark (8)--spark Rdd integrated exercises with Tian Qi teacher

stay at home for 10 hours, stay in the company for 8 hours, and may be passing by some base station in the car. Ideas: For each cell phone number under which base station to stay the longest time, in the calculation, with "mobile phone number + base station" in order to locate under which base station stay at the time, Because there will be a lot of user log data under each base station. The country has a lot of base stations, each telecommunications branch is only responsible for calcula

[Spark] [Python] [DataFrame] [SQL] Examples of Spark direct SQL processing for Dataframe

Tags: data table ext Direct DFS-car Alice LED[Spark] [Python] [DataFrame] [SQL] Examples of Spark direct SQL processing for Dataframe $cat People.json {"Name": "Alice", "Pcode": "94304"}{"Name": "Brayden", "age": +, "Pcode": "94304"}{"Name": "Carla", "age": +, "Pcoe": "10036"}{"Name": "Diana", "Age": 46}{"Name": "Etienne", "Pcode": "94104"} $ HDFs dfs-put People.json $pyspark SqlContext = Hivecontext (SC)P

"Spark" spark fault tolerance mechanism

IntroducedIn general, there are two ways to fault-tolerant distributed datasets: data checkpoints and the updating of record data .For large-scale data analysis, data checkpoint operations are costly and require a large data set to be replicated between machines through a network connection in the data center, while network bandwidth tends to be much lower than memory bandwidth and consumes more storage resources.Therefore, Spark chooses how to record

Spark Core Secret -14-spark 10 major problems in performance optimization and their solutions

Problem 1:reduce task number not appropriateSolution: Need to adjust the default configuration according to the actual situation, the adjustment method is to modify the parameter spark.default.parallelism. Typically, the reduce number is set to 2-3 times the number of cores. The number is too large, causing a lot of small tasks, increasing the overhead of starting tasks, the number is too small, the task runs slowly. Therefore, the number of tasks to reasonably modify reduce is spark.default.pa

Spark API programming Hands-on-01-Spark API Live map, filter and collect in native mode

First Test the spark API in Spark's native mode and run Spark-shell as Local:Let's start with the parallelize:Results after map operation:Below is a look at the filter operation:Filter execution Results:We use the most authentic Scala functional style of programming:Execution Result:As you can see from the results, the results are the same as that of the previous step.But in this way, the style of the compo

Spark API programming Hands-on combat-02-in cluster mode Spark API combat Textfile, cache, Count

To operate HDFs: first make sure that HDFs is up:To start the Spark cluster:Run on the Spark cluster with Spark-shell:View the "LICENSE.txt" file that was uploaded to HDFs before:Read this file with Spark:Count the number of rows in the file using the Counts:We can see that count time is 0.239708sCaches the RDD and executes count to make the cache effective:The e

Spark kernel secret -01-spark kernel core terminology parsing

Application:Application is the spark user who created the Sparkcontext instance object and contains the driver program:Spark-shell is an application because Spark-shell created a Sparkcontext object when it was started, with the name SC:Job:As opposed to Spark's action, each action, such as Count, Saveastextfile, and so on, corresponds to a job instance that contains multi-tasking parallel computations.Driv

"Original Hadoop&spark hands-on Practice 10" Spark SQL Programming Basics and hands-on practice (bottom)

"Original Hadoopspark hands-on Practice 10" Spark SQL Programming Basics and hands-on practice (bottom)Goal:1. Deep understanding of the principles of spark SQL programming2. Use simple commands to verify how spark SQL works3. Use a complete case to verify how spark SQL works, and actually do it yourself4. Successful c

Hadoop-spark cluster Installation---5.hive and spark-sql

First, prepareUpload apache-hive-1.2.1.tar.gz and Mysql--connector-java-5.1.6-bin.jar to NODE01Cd/toolsTAR-ZXVF apache-hive-1.2.1.tar.gz-c/ren/Cd/renMV apache-hive-1.2.1 hive-1.2.1This cluster uses MySQL as the hive metadata storeVI Etc/profileExport hive_home=/ren/hive-1.2.1Export path= $PATH: $HIVE _home/binSource/etc/profileSecond, install MySQLYum-y install MySQL mysql-server mysql-develCreating a hive Database Create databases HiveCreate a hive user grant all privileges the hive.* to [e-mai

Test Spark's work through the shell of Spark

STEP1: Start the Spark cluster, which is very detailed in the third lecture, after the start of the WebUI as follows: STEP2: Start the spark Shell: You can now view the shell situation through the following Web console: STEP3: Copy the Spark installation directory "README.MD" to the HDFS system Start a new command terminal on the master node and go to the

Spark Kernel unveils -08-spark web monitoring page

You can see the initialization UI code in Sparkcontext://Initialize the Spark UIPrivate[Spark]ValUI: Option[sparkui] =if(conf. Getboolean ("Spark.ui.enabled", true)) {Some(Sparkui.Createliveui( This, conf, Listenerbus, Jobprogresslistener, Env. SecurityManager,AppName)) }Else{//For tests, does not enable the UI None}//Bind the UI before starting the Task Scheduler to communicate//The bound port to

One spark receiver or multiple spark receiver receives multiple flume agents

Receive multiple flume agents with one spark receiver StringHost = args[0];intPort = Integer.parseint (args[1]);StringHost1 = args[2];intPort1 = Integer.parseint (args[3]); Inetsocketaddress Address1 =NewInetsocketaddress (Host,port); Inetsocketaddress Address2 =NewInetsocketaddress (HOST1,PORT1); Inetsocketaddress[] Inetsocketaddressarray = {ADDRESS1,ADDRESS2}; Javastreamingcontext JSSC =NewJavastreamingcontext (NewSparkconf (). Setappname ("Jav

"Spark" Spark's shuffle mechanism

Hadoop until reduce is actually the constant merge, file-based multiplexing and sequencing, and the same partition merge on the map side, at the reduce side, Merge the data files from the mapper-side copy to use for the finally reduceMulti-merge sorting, reaching two goals.Merge, put the value of the same key into a ArrayList; sort, and finally the result is sorted by key.This method is very good extensibility, the face of big data is not a problem, of course, the problem in efficiency, after a

Spark version customization Eight: Spark streaming source interpretation of the Rdd generation full life cycle thorough research and thinking

Contents of this issue:1. A thorough study of the relationship between Dstream and Rdd2. Thorough research on the streaming of Rddathorough study of the relationship between Dstream and Rdd Pre-Class thinking:How is the RDD generated?What does the rdd rely on to generate? According to Dstream.What is the basis of the RDD generation?is the execution of the RDD in spark streaming different from the Rdd execution in

Spark Learning Path---spark core concept

Introduction to spark Core conceptsA spark application initiates various concurrent operations on the cluster by the drive program, and a drive program typically contains multiple executor nodes, and the drive program accesses the SAPRK through a Saprkcontext object. The Rdd (Elastic distributed DataSet)----A distributed collection of elements, and the RDD supports two operations: conversion operations, act

The spark version of Eclipse written by WordCount runs on Spark

1. Code Writingif (args.length! = 3) {println ("Usage is org.test.WordCount Return}Val sc = new Sparkcontext (args (0), "WordCount",System.getenv ("Spark_home"), Seq (System.getenv ("Spark_test_jar")))Val textfile = Sc.textfile (args (1))Val result = Textfile.flatmap (line = Line.split ("\\s+")). Map (Word (Word, 1)). Reducebykey (_ + _)Result.saveastextfile (args (2))2. Export jar package, here I named Wordcount.jar3. OperationBin/spark-submit--maste

Spark 2.0.0 Spark-sql returns NPE Error

:31)At Com.esotericsoftware.kryo.Kryo.readObject (kryo.java:711)At Com.esotericsoftware.kryo.serializers.ObjectField.read (objectfield.java:125)... More16/05/24 09:42:53 ERROR sparksqldriver:failed in [selectDt.d_year, item.i_brand_id brand_id, Item.i_brand Brand, SUM (ss_ext_sales_price) Sum_aggFrom Date_dim DT, Store_sales, itemwhere Dt.d_date_sk = Store_sales.ss_sold_date_skand Store_sales.ss_item_sk = Item.i_item_skand item.i_manufact_id = 436and dt.d_moy=12GROUP BY Dt.d_year, Item.i_brand,

Total Pages: 15 1 .... 9 10 11 12 13 .... 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.