Discover how to train convolutional neural network, include the articles, news, trends, analysis and practical advice about how to train convolutional neural network on alibabacloud.com
0-Background
The so-called style conversion is based on a content image and a style image, merging the two, creating a new image that combines both contents and style.The required dependencies are as follows:
Import OS
import sys
import scipy.io
import scipy.misc
import Matplotlib.pyplot as Plt
from Matplotlib.pyplot import imshow from
PIL import Image from
nst_utils import *
import NumPy as NP
import te Nsorflow as TF
%matplotlib inline
1-transfer Learning
Migration learning is the applicat
visual comprehension of convolutional neural networks The
first to suggest a visual understanding of convolutional neural Networks is Matthew D. Zeiler in the visualizing and understanding convolutional Networks.
The following two blog posts can help you understand this a
Sparse Interactions, receptive Field and Parameter sharing are the core parts of the entire CNN depth network, and we use this article to specifically analyze its principles.First we consider the output matrix of the Feedforward neural network,l layer, which is equal to the input matrix of L layer and the weight matrix of L layer to do matrix multiplication, then
I. Documentation names and authorsconvolutional neural Networks at Constrained time COST,CVPR two. Reading timeJune 30, 2015Three. Purpose of the documentThe author hopes to improve the accuracy of CNN by modifying the model depth and the parameters of the convolution template, while maintaining the computational complexity. Through a lot of experiments, the author finds the importance of different parameters in the
1, IntroductionDL solves VO problem: End-to-end vo with RCNN2. Network structureA.CNN based Feature ExtractionThe paper uses the Kitti data set.The CNN section has 9 convolutional layers, with the exception of CONV6, the other convolutional layers are connected to 1 layers of relu, and there are 17 layers.B, RNN based sequential modellingRNN is different from CNN
redundant and unimportant parameters. Based on the method of low rank decomposition (Low-rank factorization), matrix/tensor decomposition is used to estimate the most informative parameters in deep CNN. Based on the migration/compression convolution filter (Transferred/compact convolutional filters) method, a special structure convolution filter is designed to reduce the complexity of storage and computation. Knowledge refinement (knowledge distillat
of the "object" in the "the position with the maximum score
Use a cost function this can explicitly model multiple objects present in the image.
Because there may be many objects in the graph, the multi-class classification loss is not applicable. The author sees this task as multiple two classification questions, loss function and classification score as followsTrainingMuti-scale TestExperimentClassification
MAP on VOC test: +3.1% compared with [56]
MAP on VOC test: +7.
Minimalist notes Deepid-net:object detection with deformable part Based convolutional Neural Networks
Paper Address Http://www.ee.cuhk.edu.hk/~xgwang/papers/ouyangZWpami16.pdf
This is the CUHK Wang Xiaogang group 2017 years of a tpami, the first hair in the CVPR2015, increased after the experiment to cast the journal, so the contrast experiment are some alexnet,googlenet and other early
ImageNet classification with deep convolutional neural Networks reading notes(2013-07-06 22:16:36) reprint
Tags: deep_learning imagenet Hinton
Category: machine learning
(after deciding to read a paper each time, the notes are recorded on the blog.) )This article, published in NIPS2012, is Hinton and his students are using deep learning in response to doubts about deep learn
in parentheses, there are many possibilities to think about. But if you give "China ()", the scope of the possibility is reduced. When it comes to "I am China", the likelihood of guessing will increase further.
So the natural way is to enlarge the number of vectors, but it will also make the dimensions of the input vector and the weight matrix of the first layer of the neural network increase rapidly. If t
large number of outstanding academics joining the deep neural network, especially the Bengio research group at the University of Montreal and the NG Research Group at Stanford University. From the analysis of the proposed model, an important contribution of the Bengio research group is to propose a deep learning network based on the self-encoder (auto-encoder).
Convolution neural Network (convolutional neural Network, CNN) is a feedforward neural network, which is widely used in computer vision and other fields. This article will briefly intro
is to "share the rights" (weight sharing), which allows a group of neurons to use the same connection right, a strategy that plays an important role in convolutional neural networks (convolutional neural Networks, referred to as CNN). For a CNN network:CNN can train with BP
training set, and the network still has a great chance of recognizing it. It is this generalization that makes the neural network a priceless tool that can be used in countless applications, from face recognition, medical diagnostics, to racing predictions, there is also the navigation of bots in computer games (robots that act as game characters) or hardware ro
Original page: Visualizing parts of convolutional neural Networks using Keras and CatsTranslation: convolutional neural network Combat (Visualization section)--using Keras to identify cats
It is well known, that convolutional
"Matlab Neural network Programming" Chemical Industry Press book notesThe fourth Chapter 4.3 BP propagation Network of forward type neural network
This article is "MATLAB Neural network
neurons are active, only a very small fraction will be active, the different layers of neurons can not be fully connected. In the back of 5.5.6, we will see an example of the sparse network structure used by convolutional neural networks.We can naturally design a more complex network structure, but in general we have
conclude that the problem it is best at solving is related to the time series. RNN is also the most natural neural network structure for dealing with such problems.
The principal structure of a RNN is duplicated several times by the time series, and structure A is also called the loop body. How to design the network structure of loop body A is the key to solve
distribution or probability model of the predicted results and samples of the degree of fit. The lower the confusion, the better the degree of fit. The calculation of the confusion histogram is shown in Flow 2:Figure 2 The construction process of the confusion histogram. (a) Sampled-area instances of the sensed region, (b) the excitation of the neurons in each area of the perceptual region, the color mapping of the excitation value, (c) the excitation of a series of neurons in the layer is tran
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.