iloc

Want to know iloc? we have a huge selection of iloc information on alibabacloud.com

Python array,list,dataframe Index Tile Operation July 19, 2016--smart wave document

Array,list,dataframe Index Tile Operation July 19, 2016--smart wave documentA simple discussion on list, one-dimensional, two-dimensional array,datafrme,loc, Iloc and IXNumPy an array of indexes and tiles:Starting with the most basic list index, let's start with a code and result:a = [0,1,2,3,4,5,6,7,8,9] a[:5:-1] #step Output:[9, 8, 7, 6][][1, 0]List slice, in "[]" There are generally two ":" Delimiter, Chinese meaning is [start: End: Step] In the

Machine Learning Quick Start (3)

Republicans ), the data used now is the voting records of these members. Each row represents a member's situation (party-party, D stands for the Republican party, R stands for the Democratic party, and I stands for the non-partisan party, the third column represents the vote of a certain bill. 1 stands for favor, 0 stands for opposition, and 0.5 stands for waiver) import pandasvotes = pandas.read_csv('114_congress.csv') Print (votes ["party"]. value_counts ()) From sklearn. metrics. pairwise i

Python Pandas usage experience

Function Prototypes:Https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.fillna.html#pandas.DataFrame.fillnaPad/ffill: Fills the missing value with the previous non-missing valueBackfill/bfill: Fills the missing value with the next non-missing valueNone: Specify a value to replace the missing value 123456789101112131415161718192021st22232425262728293031323334353637383940414243444546474849505152535455565758596061 62 63 64 65 66 67 68 69 70 71 72 73 74

Collaborative Filtering tutorial using Python and collaborative filtering using python

scores: >>> data.ix[4169].corr(data.ix[424])0.45663851303413217>>> test = data.reindex([424,4169],columns=data.ix[4169][data.ix[424].notnull()].dropna().index)>>> testmovie_id 2 6 10 11 12 17 ...424 4 4 4 4 1 5 ...4169 3 4 4 4 2 5 ... >>> test.ix[424].value_counts(sort=False).plot(kind='bar')>>> test.ix[4169].value_counts(sort=False).plot(kind='bar') For the correlation coefficient statistics of these two users, we randomly select 20, 50, 100, 200, 500, and 998 sample values

Pandas Dataframe data filtering and slicing

Dataframe Data Filter--loc,iloc,ix,at,iat condition Filter Single condition filter Select a record with a value greater than N for the col1 column: data[data[' col1 ']>n] filters the col1 column for records with a value greater than N, but displays col2, Col3 column value: data[[' col2 ', ' col3 ']][data[' col1 ']>n] Select a specific row: Use the Isin function to filter records based on specific values. Filter col1 value equals record of element in l

Tutorials | An introductory Python data analysis Library pandas

. Locvs Iloc (https://stackoverflow.com/questions/28757389/ loc-vs-iloc-vs-ix-vs-at-vs-iat/47098873#47098873), you may want to see another explanation.After studying these two parts, you should be able to understand a DataFrame and a Series component, and also understand how to select different subsets from the data. You can now read "10 minutes to pandas" for a broad overview of more useful operations. As

Python code and Bayesian theory tell you who's the best baseball player

(' Frequency ') print (' Number of draws left:%d, posterior mean:%.3 F, posterior median:%.3f, posterior 95%% quantile interval:%.3f-%.3f '% (len (posterior), Posterior.mean (), posterior.med Ian (), Posterior.quantile (. 025), Posterior.quantile (. 975))) ds_n_trials = Int (dominic_smith_spring[[' AB ', ' H ']].iloc [-1] [0]) ds_k_success = Int (dominic_smith_spring[[' AB ', ' H ']].iloc[-1][1]) posterior

Pandas exercises (ii)------data filtering and sorting

France 3 [ ] 37.9% 6.5% td>65 1 0 0 ... 6 54.6% 6 5 0 one one 6 Greece 5 8 / 30.7% 19.2% 1 1 1 ... 65.1% 9 1 + / + 12 7 Ukraine 2 up 21.2% 6.0

Pandas Array (Pandas Series)-(2)

The pandas Series is much more powerful than the numpy array , in many waysFirst, the pandas Series has some methods, such as:The describe method can give some analysis data of Series :Import= PD. Series ([1,2,3,4]) d = s.describe ()Print (d)Count 4.000000mean 2.500000std 1.290994min 1.00000025% 1.75000050% 2.50000075% 3.250000max 4.000000dtype:float64Second, the biggest difference between the Pandas series and the numpy array is that the Pandas series has a

Python implementation of rollingregression (rolling regression analysis)

.columns = [' r_squred ', ' R_squred_adj ']r2 = R2.sort_index (ascending=true)Return COEF, Coef_pvalue, R2# define date Conversion functionsdef _datetransfer (self, date):return Parser.parse (date). strftime ('%y-%m-%d ')# Multivariate regression analysis and saving datadef fit (self, feat_selected=none):If feat_selected is not None:DF = Pd.concat ([self.df_.iloc[:, 0], self.df_[feat_selected]], Axis=1)ElseDF = self.df_# Rolling regression analysisSel

Python Padas Learning

can specify which columns (Df[].fillna ()) show = Df.fillna (Df.mode (). iloc[0]) #众值填充show = Df.fillna (Df.median ()) # The median fills show = df["Item-id"].fillna (' Fill ') #对某一列填充show = df["Item-id"].astype (float) #更改某一列的数据类型show = df["Item-id"]. Replace (1, ' one ') #用 ' one ' instead of all values equal to 1 show = Df.rename (Columns=lambda x:x+ "1") #批量更改列名show = Df.rename (Index=lambda x:x+ "1" ) #批量更改索引show = Df.rename (columns={' item-id

Guess you like "recommended algorithm Contest champion sharing _ Data mining

. Global mean value2. Average value of items3. User mean value4. User classification-item mean value5. Item Classification-user average6. User Active Degree7. Item Active Degree8. Improved user activity9. Improved item active degree...The common feature of such models is to classify users and objects by designing the clustering method, and to use the average value of similar items to predict the user's score. In addition, the realization of the model has a basic understanding of the characterist

Using Python to work with Excel data __python

Registration channel '), index=df.index,columns=[' customer registration channel ', ' Size ']) Disaggregated Data ExtractionExtract by label Loc Function Df.loc[0:3] Extract 0-3 rows of data Extract by Date # Reset Index df.reset_index () #设置日期为索引 df=df.set_index (' date ') #提取2016年11月2号的数据 df[' 2016-11-2 ': ' 2016-11-02 '] November 2 Data extracted by location (Iloc function) by region Df.iloc[:4,: 5] 4 rows, 5 columns, extracted b

In-depth understanding of pandas in Python (code example)

This article brings the content is about Python pandas in-depth understanding (code example), there is a certain reference value, the need for friends can refer to, I hope to help you. First, screening First, create a 6X4 matrix data. Dates = Pd.date_range (' 20180830 ', periods=6) df = PD. DataFrame (Np.arange) reshape ((6,4)), index=dates, columns=[' A ', ' B ', ' C ', ' D ']) print (DF) Print: A B C d2018-08-30 0 1 2 32018-08-31 4 5 6 72018-09-01 8 9 1

Python is a simple tutorial for data analysis, and python uses data analysis

2934 9235 1922 14501 2385 7452 1099 17038 1382 10588 Benguet 148 4287 1955 3536 2530 771 2796 2463 2592 1064 Ifugao 3300 8063 1074 19607 3315 13134 5134 14226 6842 13828 Kalinga 10553 35257 4544 31687 8520 28252 3106 36238 4973 40140 ... 69 70 71 72 73 74 75 76 77 Abra ... 12763 2470 59094 6209 13316 2505 60303 6311 13345 Apayao ... 37625 19532 35126 6335 38613 20878 40065 6756 38902 Benguet ... 2354 4045 5987 3530 2585 3519 7062 3561 2583 Ifugao ... 9838 17125 18940 15560 7746

Pandas/excel Get sheet name Modify data multiple sheet rows The column column sorted by one output

1 #-*-coding:utf-8-*-2 3 ImportSYS4 ImportGlob5 ImportOS6 fromXlrdImportOpen_workbook7 ImportXLWT8 ImportPandas as PD9 fromXlutils.copyImportCopyTen ImportNumPy as NP One A Reload (SYS) -Sys.setdefaultencoding ("Utf-8" ) - the - defWrite_sheet (path,excel_name,name,index): -DF =Pd.read_excel (path,name) -list_sheet=[] + forNumberinchRange (0,len (df[0:])): - forIinchDf[0:].iloc[number]: + list_sheet.append (str (i)) A at PrintL

Python code instance for analyzing CDN logs through the Pandas library

to row No. 0 all columns df.iloc[:,0] #全部行, No. 0 column in [+]: df.iloc[0,:]out[32]: Name Bobage 26name:0, Dtype:objectin [all]: df.iloc[:,0]out[33]: 0 Bob1 Loya2 Denny3 Marsna Me:name, Dtype:object Gets an element that can be iloc, faster by the IAT In [the]: df.iloc[1,1]out[34]: 22In []: df.iat[1,1]out[35]: 22 Dataframe Block Selection In [approx]: df.loc[1:2,[' name ', ' age ']]out[36]: name Age1 Loya 222 Denny 20 Filter rows by criteria To filt

Pandas Library introduction of Dataframe basic operations

A, b column; a.loc[[' One ', ' two '],[' a ', ' B '] means to select the ' One ' and ' both ' lines and columns as a-b column; a.loc[' One ', ' a '] has the same effect as a.loc[[' a '],[' a '], but the former only displays the corresponding values, and the latter displays the corresponding row and column labels. 3.iloc selects the data directly from the location.This is similar to selecting by labelA.iloc[1:2,1:2] Displays the data for the first col

Analysis of CDN logs through the Pandas library in Python

30000.0Shanghai 35000.0Suzhou Nanin [+]: Obj3 + obj4out[26]: Beijing 80000.0Hangzhou 60000.0Nanjing Nanshanghai 70000.0Suzhou NaN The index of a series can be modified in-place by copying in [+]: Obj.index = [' Bob ', ' Steve ', ' Jeff ', ' Ryan ']in []: objout[28]: Bob 4Steve 7jeff-5ryan 3 DataFrame Pandas reading files in [+]: df = pd.read_table (' pandas_test.txt ', sep= ', names=[' name ', ' age ')) in [+]: dfout[30]: name age0 Bob 261 Loy A 222 Denny 203 Mars 25 Dataframe Column Select

Python Shipping Simple tutorials for data analysis

14501 2385 7452 1099 17038 1382 10588Benguet 148 4287 1955 3536 2530 771 2796 246 3 2592 1064Ifugao 3300 8063 1074 19607 3315 13134 5134 14226 6842 13828Kalinga 10553 35257 4544 31687 8520 28252 3106 3623 8 4973 40140 ... The " 77Abra ..." 12763 2470 59094 6209 13316 2505 60303 6311 13345Apayao ... 37625 19532 35126 6335 38613 20878 40065 6756 38902Benguet ... 2354 4045 5987 3530 2585 3519 7062 3561 2583Ifugao ... 9838 17125 18940 15560 7746 19737 19422 15910 11096Kalinga ... 65782 15279

Total Pages: 4 1 2 3 4 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.