jupyter spark

Discover jupyter spark, include the articles, news, trends, analysis and practical advice about jupyter spark on alibabacloud.com

Apache Spark Source Code go-18-use intellij idea to debug Spark Source Code

You are welcome to reprint it. Please indicate the source, huichiro.Summary The previous blog shows how to modify the source code to view the call stack. Although it is also very practical, compilation is required for every modification, which takes a lot of time and is inefficient, it is also an invasive modification that is not elegant. This article describes how to use intellij idea to track and debug spark source code.Prerequisites This document a

Spark (10)--Spark streaming API programming

The spark version tested in this article is 1.3.1Spark Streaming programming Model:The first step:A StreamingContext object is required, which is the portal to the spark streaming operation, and two parameters are required to build a StreamingContext object:1, Sparkconf object: This object is configured by the Spark program settings, such as the master node of th

Liaoliang on Spark performance optimization tenth quarter of the world exclusive Spark unified memory management!

Content:1, the traditional spark memory management problem;2, Spark unified memory management;3, Outlook;========== the traditional Spark memory management problem ============Spark memory is divided into three parts:Execution:shuffles, Joins, Sort, aggregations, etc., by default, spark.shuffle.memoryfraction default i

Apache Spark Source 1--Spark paper reading notes

transformation processing, the contents of the dataset are changed, the dataset A is converted to DataSet B, and the contents of the dataset are then normalized to a specific value after action has been processed. Only if there is an action on the RDD, all operation on the RDD and its parent RDD will be submitted to cluster for real execution.From code to dynamic running, the components involved are as shown.New Sparkcontext ("spark://...", "MyJob"

Spark tutorial-building a spark cluster (1)

For more than 90% of people who want to learn spark, how to build a spark cluster is one of the greatest difficulties. To solve all the difficulties in building a spark cluster, jia Lin divides the spark cluster construction into four steps, starting from scratch, without any pre-knowledge, covering every detail of the

Spark Shell:wordcount Spark Primer

1. After installing Spark, enter spark in the bin directory: Bin/spark-shell scala> val textfile = Sc.textfile ("/users/admin/spark/ Spark-1.6.1-bin-hadoop2.6/readme.md ") scala> Textfile.flatmap (_.split (" ")). Filter (!_.isempty). Map ((_,1)). Reducebykey (_+_). Collect (

Spark streaming, Kafka combine spark JDBC External datasouces processing case

Label:Scenario: Use spark streaming to receive the data sent by Kafka and related query operations to the tables in the relational database;The data format sent by Kafka is: ID, name, Cityid, and the delimiter is tab.1 Zhangsan 12 Lisi 13 Wangwu 24 3The table city structure of MySQL is: ID int, name varchar1 BJ2 sz3 shThe results of this case are: Select S.id, S.name, S.cityid, c.name from student S joins C

36th Spark TaskScheduler Spark Shell Case Run log detailed, TaskScheduler and Schedulerbackend, FIFO and fair, Task runtime local algorithm details

When a task executes a commit failure, it retries, and the default retry count for the task is 4 times. def this (sc:sparkcontext) = This (SC, sc.conf.getInt ("Spark.task.maxFailures", 4)) (Taskschedulerimpl)(2) Add TasksetmanagerSchedulerbuilder (depending on the Schedulermode, FIFO is different from fair implementation) #addTaskSetManger方法会确定TaskSetManager的调度顺序, Then follow Tasksetmanager's locality aware to determine that each task runs specifically in that executorbackend. The default schedu

Big Data spark mushroom cloud prequel 16th: Scala implicits programming thorough combat and spark source appreciation (study notes)

This lesson: The use of Scala's implicit in the Spark source code Scala's implicit programming operation combat Scala's implicit enterprise-class best practices The use of Scala's implicit in the Spark source codeThe meaning of this thing is very significant, the RDD itself does not have a key, value, but it is the time of its own interpretation into a key Value of the method to read,

Apache Spark Source code reading 9 -- Spark Source code compilation

You are welcome to reprint it. Please indicate the source, huichiro.Summary There is nothing to say about source code compilation. For Java projects, as long as Maven or ant simple commands are clicked, they will be OK. However, when it comes to spark, it seems that things are not so simple. According to the spark officical document, there will always be compilation errors in one way or another, which is an

[Spark] [Python] [Application] Example of a non-interactive run of spark application

Examples of non-interactive running spark application$ cat count.pyImport SysFrom Pyspark import Sparkcontextif __name__ = = "__main__":sc = Sparkcontext ()LogFile = sys.argv[1]Count = Sc.textfile (logfile). Filter (Lambda line: '. jpg '). Count ()Print "JPG requests:", CountSc.stop ()$$ spark-submit--master yarn-client count.py/test/weblogs/*Number of JPG requests:10258$[

Learn Spark (8)--spark Rdd integrated exercises with Tian Qi teacher

stay at home for 10 hours, stay in the company for 8 hours, and may be passing by some base station in the car. Ideas: For each cell phone number under which base station to stay the longest time, in the calculation, with "mobile phone number + base station" in order to locate under which base station stay at the time, Because there will be a lot of user log data under each base station. The country has a lot of base stations, each telecommunications branch is only responsible for calcula

[Spark] [Python] [DataFrame] [SQL] Examples of Spark direct SQL processing for Dataframe

Tags: data table ext Direct DFS-car Alice LED[Spark] [Python] [DataFrame] [SQL] Examples of Spark direct SQL processing for Dataframe $cat People.json {"Name": "Alice", "Pcode": "94304"}{"Name": "Brayden", "age": +, "Pcode": "94304"}{"Name": "Carla", "age": +, "Pcoe": "10036"}{"Name": "Diana", "Age": 46}{"Name": "Etienne", "Pcode": "94104"} $ HDFs dfs-put People.json $pyspark SqlContext = Hivecontext (SC)P

[Invitation Letter] spark on docker in-depth secrets at the September 26 spark public welfare lecture hall on Friday, 14th)

The latest virtualization technology of docker cloud computing is gradually becoming the standard of paas lightweight virtualization technology.As an open-source application container engine, docker does not rely on any language, framework, or system, docker using the sandbox mechanism allows developers to package their applications into portable containers and deploy them on all mainstream Linux/Unix systems.This course will go deep into the essence and inside story of docker, from the depth of

ANDROID simulates the sliding jet effect of spark particles and android spark

ANDROID simulates the sliding jet effect of spark particles and android spark Reprint please indicate this article from the blog of the big glutinous rice (http://blog.csdn.net/a396901990), thank you for your support! Opening nonsense: I changed my cell phone a year ago, SONY's Z3C. The mobile phone has a slide animation when unlocking the screen, similar to spark

Spark-sql (Spark SQL CLI) client integrated hive

1. Install Hadoop clusterReference: http://www.cnblogs.com/wcwen1990/p/6739151.html2. Installing hiveReference: http://www.cnblogs.com/wcwen1990/p/6757240.html3. Installation configuration SparkCompiling spark:http://www.cnblogs.com/wcwen1990/p/7688027.htmlDeployment reference: Http://www.cnblogs.com/wcwen1990/p/6889521.html4. Spark-sql Integrated HiveCopy the Hdfs-site.xml, hive-site.xml configuration file to the

Spark streaming combined with spark JDBC External datasouces processing case

Scenario: Use spark streaming to receive real-time data and query operations related to tables in the relational database;Using technology: Spark streaming + spark JDBC External datasourcesCode prototype: Packagecom.luogankun.spark.streamingImportorg.apache.spark.SparkConfImportorg.apache.spark.streaming. {Seconds, StreamingContext}ImportOrg.apache.spark.sql.hive

Spark kernel secret -04-spark task scheduling system personal understanding

The task scheduling system for Spark is as follows:From the Chinese Academy of Sciences to see the cause rddobject generated DAG, and then entered the Dagscheduler stage, Dagscheduler is the state-oriented high-level scheduler, Dagscheduler the DAG split into a lot of tasks, Each group of tasks is a state, whenever encountering shuffle will produce a new state, you can see a total of three state;dagscheduler need to record those rdd is deposited into

Apache Spark Source Code 22 -- spark mllib quasi-Newton method L-BFGS source code implementation

You are welcome to reprint it. Please indicate the source, huichiro.Summary This article will give a brief review of the origins of the quasi-Newton method L-BFGS, and then its implementation in Spark mllib for source code reading.Mathematical Principles of the quasi-Newton Method Code Implementation The regularization method used in the L-BFGS algorithm is squaredl2updater. The breezelbfgs function in the breeze library of the scalanlp member

Test Spark's work through the shell of Spark

STEP1: Start the Spark cluster, which is very detailed in the third lecture, after the start of the WebUI as follows: STEP2: Start the spark Shell: You can now view the shell situation through the following Web console: STEP3: Copy the Spark installation directory "README.MD" to the HDFS system Start a new command terminal on the master node and go to the

Total Pages: 15 1 .... 11 12 13 14 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.