You are welcome to reprint it. Please indicate the source, huichiro.Summary
The previous blog shows how to modify the source code to view the call stack. Although it is also very practical, compilation is required for every modification, which takes a lot of time and is inefficient, it is also an invasive modification that is not elegant. This article describes how to use intellij idea to track and debug spark source code.Prerequisites
This document a
The spark version tested in this article is 1.3.1Spark Streaming programming Model:The first step:A StreamingContext object is required, which is the portal to the spark streaming operation, and two parameters are required to build a StreamingContext object:1, Sparkconf object: This object is configured by the Spark program settings, such as the master node of th
Content:1, the traditional spark memory management problem;2, Spark unified memory management;3, Outlook;========== the traditional Spark memory management problem ============Spark memory is divided into three parts:Execution:shuffles, Joins, Sort, aggregations, etc., by default, spark.shuffle.memoryfraction default i
transformation processing, the contents of the dataset are changed, the dataset A is converted to DataSet B, and the contents of the dataset are then normalized to a specific value after action has been processed. Only if there is an action on the RDD, all operation on the RDD and its parent RDD will be submitted to cluster for real execution.From code to dynamic running, the components involved are as shown.New Sparkcontext ("spark://...", "MyJob"
For more than 90% of people who want to learn spark, how to build a spark cluster is one of the greatest difficulties. To solve all the difficulties in building a spark cluster, jia Lin divides the spark cluster construction into four steps, starting from scratch, without any pre-knowledge, covering every detail of the
Label:Scenario: Use spark streaming to receive the data sent by Kafka and related query operations to the tables in the relational database;The data format sent by Kafka is: ID, name, Cityid, and the delimiter is tab.1 Zhangsan 12 Lisi 13 Wangwu 24 3The table city structure of MySQL is: ID int, name varchar1 BJ2 sz3 shThe results of this case are: Select S.id, S.name, S.cityid, c.name from student S joins C
When a task executes a commit failure, it retries, and the default retry count for the task is 4 times. def this (sc:sparkcontext) = This (SC, sc.conf.getInt ("Spark.task.maxFailures", 4)) (Taskschedulerimpl)(2) Add TasksetmanagerSchedulerbuilder (depending on the Schedulermode, FIFO is different from fair implementation) #addTaskSetManger方法会确定TaskSetManager的调度顺序, Then follow Tasksetmanager's locality aware to determine that each task runs specifically in that executorbackend. The default schedu
This lesson:
The use of Scala's implicit in the Spark source code
Scala's implicit programming operation combat
Scala's implicit enterprise-class best practices
The use of Scala's implicit in the Spark source codeThe meaning of this thing is very significant, the RDD itself does not have a key, value, but it is the time of its own interpretation into a key Value of the method to read,
You are welcome to reprint it. Please indicate the source, huichiro.Summary
There is nothing to say about source code compilation. For Java projects, as long as Maven or ant simple commands are clicked, they will be OK. However, when it comes to spark, it seems that things are not so simple. According to the spark officical document, there will always be compilation errors in one way or another, which is an
stay at home for 10 hours, stay in the company for 8 hours, and may be passing by some base station in the car.
Ideas:
For each cell phone number under which base station to stay the longest time, in the calculation, with "mobile phone number + base station" in order to locate under which base station stay at the time,
Because there will be a lot of user log data under each base station.
The country has a lot of base stations, each telecommunications branch is only responsible for calcula
The latest virtualization technology of docker cloud computing is gradually becoming the standard of paas lightweight virtualization technology.As an open-source application container engine, docker does not rely on any language, framework, or system, docker using the sandbox mechanism allows developers to package their applications into portable containers and deploy them on all mainstream Linux/Unix systems.This course will go deep into the essence and inside story of docker, from the depth of
ANDROID simulates the sliding jet effect of spark particles and android spark
Reprint please indicate this article from the blog of the big glutinous rice (http://blog.csdn.net/a396901990), thank you for your support!
Opening nonsense:
I changed my cell phone a year ago, SONY's Z3C. The mobile phone has a slide animation when unlocking the screen, similar to spark
Scenario: Use spark streaming to receive real-time data and query operations related to tables in the relational database;Using technology: Spark streaming + spark JDBC External datasourcesCode prototype: Packagecom.luogankun.spark.streamingImportorg.apache.spark.SparkConfImportorg.apache.spark.streaming. {Seconds, StreamingContext}ImportOrg.apache.spark.sql.hive
The task scheduling system for Spark is as follows:From the Chinese Academy of Sciences to see the cause rddobject generated DAG, and then entered the Dagscheduler stage, Dagscheduler is the state-oriented high-level scheduler, Dagscheduler the DAG split into a lot of tasks, Each group of tasks is a state, whenever encountering shuffle will produce a new state, you can see a total of three state;dagscheduler need to record those rdd is deposited into
You are welcome to reprint it. Please indicate the source, huichiro.Summary
This article will give a brief review of the origins of the quasi-Newton method L-BFGS, and then its implementation in Spark mllib for source code reading.Mathematical Principles of the quasi-Newton Method
Code Implementation
The regularization method used in the L-BFGS algorithm is squaredl2updater.
The breezelbfgs function in the breeze library of the scalanlp member
STEP1: Start the Spark cluster, which is very detailed in the third lecture, after the start of the WebUI as follows:
STEP2: Start the spark Shell:
You can now view the shell situation through the following Web console:
STEP3: Copy the Spark installation directory "README.MD" to the HDFS system
Start a new command terminal on the master node and go to the
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.