keras datasets

Discover keras datasets, include the articles, news, trends, analysis and practical advice about keras datasets on alibabacloud.com

Related Tags:

Mixed use of Keras and TensorFlow

Keras mixed with TensorFlow Keras and TensorFlow using tensorfow Fly Keras Recently, TensorFlow has updated its new version to 1.4. Many updates have been made, and it is of course important to add Tf.keras. After all, Keras for the convenience of the model building everyone is obvious to all. Likes the

Windows installation Keras Framework

When you install Keras,import Keras with Pip after the normal installation completes Python 2.7, you will be prompted not toTensorFlow initially does not support Windows environments and is now compatible with Windows, but requires Python 3. The installation steps are as follows:Install the Anaconda link first: https://www.anaconda.com/download/download the Windows 2.7 version and install it directly after

Keras-anomaly-detection code analysis-essentially SAE and lstm time series prediction

Keras-anomaly-detection Anomaly Detection implemented in Keras The source codes of the recurrent, convolutional and feedforward networks auto-encoders for anomaly detection can be found in keras_anomaly_detection/library/convolutional. py and keras_anomaly_detection/library/recurrent. py and keras_anomaly_detection/library/feedforward. PY The anomaly detection is implemented using auto-Encoder with convolut

Keras Installation and use

Installation Full Name reference https://keras-cn.readthedocs.io/en/latest/for_beginners/keras_linux/cuda8.0.cudnn5.0,ubuntu16.04 configured in the environmentInstalled version of TENSORFLOW-GPUTest after the installation is complete, import TensorFlowIssue: ImportError:libcublas.so. 9. 0:cannot Open Shared object file:no such file or directory Cause: The TensorFlow version does not correspond to the CUDNN and Cuda versions, ref: 79415787So

Anaconda+theano+keras handwritten characters recognition new

The title describes the operating environment Win7 2016-07-24Look at the online a lot of keras identification minist but generally because of the version of the problem, can not be directly used,, here also special thanks to the three-headed SCP. The tutorial is very good to the whole. There is the best you install Anaconda before the original installed py uninstall, or install MinGW when the problem,, installation is not detailed introduction of the

Implementation of three kinds of cyclic neural network (RNN) algorithm (from scratch, Theano, Keras) _ Neural network

Preface body RNN from Scratch RNN using Theano RNN using Keras PostScript "From simplicity to complexity, and then to Jane." "Foreword Skip the nonsense and look directly at the text After a period of study, I have a preliminary understanding of the basic principles of RNN and implementation methods, here are listed in three different RNN implementation methods for reference. RNN principle in the Internet can find a lot, I do not say here, say it wil

Install Python, Theano, Keras, Spearmint, Mongodb in Ubuntu

Label:System configuration: Ubuntu 14 (other systems are also similar to the following operation) 1. Install Python via Anaconda Address: Https://www.continuum.io/downloads#linux 2. Installing Theano [Email protected]:~/downloads$ pip Install Theano 3. Installing Keras [Email protected]:~/downloads$ pip Install Keras 4. Installing Spearmint [Email protected]:~/tools$ pip install-e ~/tools/spearmint/ [Ema

Learning Data Augmentation Based on keras, augmentationkeras

Learning Data Augmentation Based on keras, augmentationkeras In deep learning, when the data size is not large enough, the following 4 methods are often used: 1. Manually increase the size of the training set. A batch of "new" Data is created from existing Data by means of translation, flip, and Noise addition. That is, Data Augmentation.2. regularization. A small amount of data may lead to over-fitting of the model, making the training error small a

Contrast learning using Keras to build common neural networks such as CNN RNN

Keras is a Theano and TensorFlow-compatible neural network Premium package that uses him to component a neural network more quickly, and several statements are done. and a wide range of compatibility allows Keras to run unhindered on Windows and MacOS or Linux.Today to compare learning to use Keras to build the following common neural network: Regression

Keras error ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: & #39; Tensor (& quot; embedding_1/random_uniform: 0 & quot;, shape = (5001,128 ), dtype = float32) & #39 ;,

Keras error ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'tensor ("embedding_1/random_uniform: 0", shape = (5001,128), dtype = float32 )', Train and save the model on the server. After the model is copied to the local machine, the load_model () error is returned: ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'tensor ("embedding_1/random_uniform: 0", shape = (5001,128), dtyp

Keras installation in Win10 under Anaconda

under the successful installation Anaconda, First, install MinGW: Open prompt-- Input:Conda config--add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/--in input: Conda config--set show_cha Nnel_urls yes-- last input: Conda install MinGW Libpython (so the purpose of the installation is to download more quickly) Second, Open Prompt , you will see a path inside the window, depending on your path, locate the corresponding directory, and create a new text document in the dir

Using Keras to create fitting network to solve regression problem regression_ machine learning

The curve fitting is realized, that is, the regression problem. The model was created with single input output, and two hidden layers were 100 and 50 neurons. In the official document of Keras, the examples given are mostly about classification. As a result, some problems were encountered in testing regression. In conclusion, attention should be paid to the following aspects: 1 training data should be matrix type, where the input and output is 1000*1,

Gdal reads data from subdatasets such as HDF and netcdf (multiple datasets)

Because the structure of the satellite data (HDF data) is different from that of geotif, you must pay special attention to it when reading the data. Geotif data is generally a file that contains data in multiple bands. While while the modemis, a file contains multiple subdatasets. Gdal. Each subdataset contains multiple band data. In addition, the default compiled gdal does not include support for the modem_data. You need to download the source code for hdf4 and hdf5 separately, and then modify

Keras Simple Introduction and use

Python provides two libraries for fast numerical computations, Theano and TensorFlow, which are very powerful libraries, but it's hard to use them directly to create deep learning models, so Keras came into being, Keras provides a fast and efficient way to create deep learning models based on Theano or TensorFlow.About the installation of Keras, you can see my ot

WINDOWS7/10 Anaconda->theano->keras Installation

find MinGW.4, restart the computerV. Installation of TheanoIt is easiest to install directly using the command line:1. Open cmd2, input pip install Theano, after the return is pleasing to download the progress bar, this is very small, so the installation is relatively fast.3, in cmd, input python into the Python environment, and then enter import Theano carriage return, need to wait for some time.Vi. installation of KerasKeras This library on the basis of Theano continue to encapsulate, modular

Keras Transfer Learning, change the VGG16 output layer, with imagenet weight retrain.

Migration learning, with off-the-shelf network, run their own data: to retain the network in addition to the output layer of the weight of other layers, change the existing network output layer output class number. Train your network based on existing network weights,Take Keras 2.1.5/vgg16net as an example. Import the necessary libraries From keras.preprocessing.image import Imagedatagenerator to keras impo

Deep learning Python Script Training Keras mnist digital recognition model __python

This script is a training Keras mnist digital Recognition program, previously sent, today to achieve the forecast, # larger CNN for the mnist Dataset # 2.Negative dimension size caused by subtracting 5 from 1 for ' conv2d_4/convolution ' ( OP: ' conv2d ') with input shapes # 3.userwarning:update your ' conv2d ' call to the Keras 2 Api:http://blog.csdn.net/johini eli/article/details/69222956 # 4.Error check

Keras Switch back end (Theano and TensorFlow)

The laboratory installed new Keras, found Keras default back end is TensorFlow, want to change back to Theano, see the official document also didn't understand, finally buttoned up, very simple.Description of Chinese document: Keras Chinese document, switch back end In fact, in C:\Users\75538 (75538 is my windos user name, to find your corresponding user name on

Visualization of Keras depth Learning training results

' This script goes along the blog post "Building powerful image classification models using very little data" from BLOG.K Eras.io. It uses data that can is downloaded at:https://www.kaggle.com/c/dogs-vs-cats/data in our setup, we:-Created a data/folder-created Train/and validation/subfolders inside data/created-Cats/and dogs/subfolders inside train/a nd validation/-Put the "Cat pictures index 0-999 in data/train/cats-put" Cat pictures index 1000-1400 in Data/valida Tion/cats-put The Dogs Picture

Keras Installation and introduction

Reprint: http://blog.csdn.net/mmc2015/article/details/50976776 Install first and say: sudo pipinstall Keras or manually installed: Download: Git clone git://github.com/fchollet/keras.git Upload it to the appropriate machine. Install: CD to the Keras folder and run the Install command: sudo python setup.py install Keras in Theano, before learning

Total Pages: 15 1 .... 4 5 6 7 8 .... 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.