Keras mixed with TensorFlow Keras and TensorFlow using tensorfow Fly Keras
Recently, TensorFlow has updated its new version to 1.4. Many updates have been made, and it is of course important to add Tf.keras. After all, Keras for the convenience of the model building everyone is obvious to all.
Likes the
When you install Keras,import Keras with Pip after the normal installation completes Python 2.7, you will be prompted not toTensorFlow initially does not support Windows environments and is now compatible with Windows, but requires Python 3. The installation steps are as follows:Install the Anaconda link first: https://www.anaconda.com/download/download the Windows 2.7 version and install it directly after
Keras-anomaly-detection
Anomaly Detection implemented in Keras
The source codes of the recurrent, convolutional and feedforward networks auto-encoders for anomaly detection can be found in keras_anomaly_detection/library/convolutional. py and keras_anomaly_detection/library/recurrent. py and keras_anomaly_detection/library/feedforward. PY
The anomaly detection is implemented using auto-Encoder with convolut
Installation Full Name reference https://keras-cn.readthedocs.io/en/latest/for_beginners/keras_linux/cuda8.0.cudnn5.0,ubuntu16.04 configured in the environmentInstalled version of TENSORFLOW-GPUTest after the installation is complete, import TensorFlowIssue: ImportError:libcublas.so. 9. 0:cannot Open Shared object file:no such file or directory
Cause: The TensorFlow version does not correspond to the CUDNN and Cuda versions, ref: 79415787So
The title describes the operating environment Win7 2016-07-24Look at the online a lot of keras identification minist but generally because of the version of the problem, can not be directly used,, here also special thanks to the three-headed SCP. The tutorial is very good to the whole. There is the best you install Anaconda before the original installed py uninstall, or install MinGW when the problem,, installation is not detailed introduction of the
Preface body RNN from Scratch RNN using Theano RNN using Keras PostScript
"From simplicity to complexity, and then to Jane." "Foreword
Skip the nonsense and look directly at the text
After a period of study, I have a preliminary understanding of the basic principles of RNN and implementation methods, here are listed in three different RNN implementation methods for reference.
RNN principle in the Internet can find a lot, I do not say here, say it wil
Label:System configuration: Ubuntu 14 (other systems are also similar to the following operation) 1. Install Python via Anaconda Address: Https://www.continuum.io/downloads#linux 2. Installing Theano [Email protected]:~/downloads$ pip Install Theano 3. Installing Keras [Email protected]:~/downloads$ pip Install Keras 4. Installing Spearmint [Email protected]:~/tools$ pip install-e ~/tools/spearmint/ [Ema
Learning Data Augmentation Based on keras, augmentationkeras
In deep learning, when the data size is not large enough, the following 4 methods are often used:
1. Manually increase the size of the training set. A batch of "new" Data is created from existing Data by means of translation, flip, and Noise addition. That is, Data Augmentation.2. regularization. A small amount of data may lead to over-fitting of the model, making the training error small a
Keras is a Theano and TensorFlow-compatible neural network Premium package that uses him to component a neural network more quickly, and several statements are done. and a wide range of compatibility allows Keras to run unhindered on Windows and MacOS or Linux.Today to compare learning to use Keras to build the following common neural network:
Regression
Keras error ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'tensor ("embedding_1/random_uniform: 0", shape = (5001,128), dtype = float32 )',
Train and save the model on the server. After the model is copied to the local machine, the load_model () error is returned:
ValueError: Tensor conversion requested dtype int32 for Tensor with dtype float32: 'tensor ("embedding_1/random_uniform: 0", shape = (5001,128), dtyp
under the successful installation Anaconda,
First, install MinGW:
Open prompt--
Input:Conda config--add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/--in input: Conda config--set show_cha Nnel_urls yes--
last input: Conda install MinGW Libpython (so the purpose of the installation is to download more quickly)
Second,
Open
Prompt
, you will see a path inside the window, depending on your path, locate the corresponding directory, and create a new text document in the dir
The curve fitting is realized, that is, the regression problem.
The model was created with single input output, and two hidden layers were 100 and 50 neurons.
In the official document of Keras, the examples given are mostly about classification. As a result, some problems were encountered in testing regression. In conclusion, attention should be paid to the following aspects:
1 training data should be matrix type, where the input and output is 1000*1,
Because the structure of the satellite data (HDF data) is different from that of geotif, you must pay special attention to it when reading the data. Geotif data is generally a file that contains data in multiple bands. While while the modemis, a file contains multiple subdatasets. Gdal. Each subdataset contains multiple band data. In addition, the default compiled gdal does not include support for the modem_data. You need to download the source code for hdf4 and hdf5 separately, and then modify
Python provides two libraries for fast numerical computations, Theano and TensorFlow, which are very powerful libraries, but it's hard to use them directly to create deep learning models, so Keras came into being, Keras provides a fast and efficient way to create deep learning models based on Theano or TensorFlow.About the installation of Keras, you can see my ot
find MinGW.4, restart the computerV. Installation of TheanoIt is easiest to install directly using the command line:1. Open cmd2, input pip install Theano, after the return is pleasing to download the progress bar, this is very small, so the installation is relatively fast.3, in cmd, input python into the Python environment, and then enter import Theano carriage return, need to wait for some time.Vi. installation of KerasKeras This library on the basis of Theano continue to encapsulate, modular
Migration learning, with off-the-shelf network, run their own data: to retain the network in addition to the output layer of the weight of other layers, change the existing network output layer output class number. Train your network based on existing network weights,Take Keras 2.1.5/vgg16net as an example. Import the necessary libraries
From keras.preprocessing.image import Imagedatagenerator to
keras impo
This script is a training Keras mnist digital Recognition program, previously sent, today to achieve the forecast,
# larger CNN for the mnist Dataset # 2.Negative dimension size caused by subtracting 5 from 1 for ' conv2d_4/convolution ' ( OP: ' conv2d ') with input shapes # 3.userwarning:update your ' conv2d ' call to the Keras 2 Api:http://blog.csdn.net/johini eli/article/details/69222956 # 4.Error check
The laboratory installed new Keras, found Keras default back end is TensorFlow, want to change back to Theano, see the official document also didn't understand, finally buttoned up, very simple.Description of Chinese document: Keras Chinese document, switch back end
In fact, in C:\Users\75538 (75538 is my windos user name, to find your corresponding user name on
' This script goes along the blog post "Building powerful image classification models using very little data" from BLOG.K Eras.io. It uses data that can is downloaded at:https://www.kaggle.com/c/dogs-vs-cats/data in our setup, we:-Created a data/folder-created Train/and validation/subfolders inside data/created-Cats/and dogs/subfolders inside train/a nd validation/-Put the "Cat pictures index 0-999 in data/train/cats-put" Cat pictures index 1000-1400 in Data/valida Tion/cats-put The Dogs Picture
Reprint: http://blog.csdn.net/mmc2015/article/details/50976776
Install first and say:
sudo pipinstall Keras
or manually installed:
Download: Git clone git://github.com/fchollet/keras.git
Upload it to the appropriate machine.
Install: CD to the Keras folder and run the Install command:
sudo python setup.py install
Keras in Theano, before learning
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.