About Keras:Keras is a high-level neural network API, written in Python and capable of running on TENSORFLOW,CNTK or Theano.Use the command to install:Pip Install KerasSteps to implement deep learning in Keras
Load the data.
Define the model.
Compile the model.
Fit the model.
Evaluate the model.
Use the dense class to describe a fully connected layer. We can specify the number of neurons in a layer as the first parameter,
The content of a simple experiment lesson.First, the size of the given sample material is 32*32, which can be done in Python batch and OpenCV function resize (), where I do not list the code.List some of the pictures that are well-shrunk.Then in the use of Keras CV convolutional neural network model, before doing this experiment, the computer should be configured Python+theano+keras environment.#生成一个modelde
Python 3.6.4/win10 when using pip to install keras, an error occurred while installing the dependent PyYAML, win10keras
PS C:\Users\myjac\Desktop\simple-chinese-ocr> pip install kerasCollecting keras Downloading http://mirrors.aliyun.com/pypi/packages/68/89/58ee5f56a9c26957d97217db41780ebedca3154392cb903c3f8a08a52208/Keras-2.1.2-py2.py3-none-any.whl (304kB) 1
This article is mainly about the basic model of WaveNet and Keras code understanding, to help and I just into the pit and difficult to understand its code of small white.
Seanliao
blog:www.cnblogs.com/seanliao/
Original blog post, please specify the source.I. What is WaveNet?
Simply put, WaveNet is a generation model, similar to VAE, GAN, etc., wavenet the biggest feature is the ability to directly generate raw audio models, presented by the
In order to learn Keras, first have to install good keras, but under Windows, Keras installation really will have a lot of problems. These two days go a lot of detours, finally installed Keras, is based on Theano, now record the installation process, perhaps to their own help.
1. Install Python
Website Download Python3
Symbolic Calculation
The underlying library of Keras uses Theano or TensorFlow, both of which are also known as Keras's back end, whether Theano or TensorFlow, a symbolic library.As for symbolism, it can be generalized as follows: the calculation of symbolism begins with the definition of various variables and then establishes a "calculation chart", which specifies the computational relationship between the variables. The building of a good calculati
Directory
Source information
Using Keras to explore the filter for convolutional networks
Visualize All Filters
Deep Dream (Nightmare)
Fool the Neural network
The revolution has not been successful, comrades still need to work hard
Source informationThis address: http://blog.keras.io/how-convolutional-neural-networks-see-the-world.htmlThis article Francois CholletThe translation of this article was first published by
http://blog.csdn.net/jerr__y/article/details/53695567 Introduction: This article mainly describes how to configure the GPU version of the TensorFlow environment in Ubuntu system. Mainly include:-Cuda Installation-CUDNN Installation-TensorFlow Installation-Keras InstallationAmong them, Cuda installs this part is the most important, Cuda installs after, whether is tensorflow or other deep learning framework can be easy to configure.My environment: Ubunt
Part I: InstallationSince my computer was already configured with Caffe, all the related packages for Python have been installed. Therefore, even without Anaconda installation is still very simple.sudo pip install TensorFlowsudo pip install KerasTest:Pythonfrom keras.models import SequentialThe second part: How to use Keras to read pictures from the local, and do a two classification of the neural network, directly posted code:#Coding=utf-8##ImportOs#
Tag:tensor Construction pipflowinstall aptsciras environment construction
Install Theano (Environment parameter: Ubuntu 16.04.2 Python 2.7)
Installing NumPy and SciPy
1.sudo apt-get Install Python-numpy python-scipy
2.sudo pip Install Theano
If PIP is not installed, install PIP first
Installing Pyyaml
sudo pip install Pyyaml
It is recommended to install HDF5 and H5PY,CUDNN according to your own situation
sudo apt-get insta
TensorFlow and Theano and Keras are deep learning frameworks, TensorFlow and Theano are more flexible and difficult to learn, they are actually a differentiator.
Keras is actually TensorFlow and Keras interface (Keras as the front end, TensorFlow or Theano as the back end), it is also very flexible, and relatively eas
first, the initialization of variables
# for each filter, generate the dimension of the image
Img_width =
Img_height = +
# We want to go to the visual layer name
# (see Model definition in keras/applications/vgg16.py )
layer_name = ' block5_conv1 '
convert the tensor to a valid image
def deprocess_image (x):
# Normalize tensor
x-= X.mean ()
x/= (X.STD () + 1e-5)
x *= 0.1
# clip to [0
Win10 + python3.6 + VSCode + tensorflow-gpu + keras + cuda8 + cuDN6N environment configuration, win10cudn6n
Preface:
Before getting started, I knew almost nothing about python or tensorflow, so I took a lot of detours When configuring this environment, it took a whole week to complete the environment... However, the most annoying thing is that it is difficult to set up the environment. Because my laptop is low in configuration, the program provided by
first, the basic environment$PIP Install flask gevent Requests Pillowwhere flask no need to explainThe gevent is used to automatically switch processes;Pillow is used for image processing under python;The requests is used for Python under request processing. Second, the Core code interpretation# Import the necessary packages fromKeras.applicationsImportResNet50 fromKeras.preprocessing.imageImportImg_to_array fromKeras.applicationsImportImagenet_utils fromPILImportImageImportNumPy asNpImportFlask
I. Background and purposeBackground: Configure the Theano, get the GPU, to learn the Dnn method.Objective: This study Keras basic usage, learn how to write MLP with Keras, learn keras the basic points of text.Second, prepareToolkit: Theano, NumPy, Keras and other toolkitsData set: If you can't get down, you can use the
Keras.js
Suggest a demo on the Webhttps://transcranial.github.io/keras-js/#/
The load is slow, but it's very fast to recognize.
Run Keras models (trained using TensorFlow backend) in your browser, with GPU support. Models are created directly from the Keras json-format configuration file, using weights serialized directly from the Corr esponding HDF5 file. Als
. Then this version should be a driver that matches CUDA8 with each other. )
Install cudnn5.1 (HTTPS://DEVELOPER.NVIDIA.COM/CUDNN) unzip the installation package just down, copy the files under these three folders to the Cuda folder below.
After the Anaconda installation is complete, you should be able to see whether the version is 3.5 by tapping Python directly in the Windows Command window.
Create a TensorFlow virtual environment c:> Conda create-n TensorFlow python=3.5, everything in th
The Keras framework is concise and elegant, and its design is a model. Tensorflow is bloated and complicated, and it is confusing. Of course, the peripheral components of Keras, such as callbacks, datasets, and preprocessing, have a lot of over-designed feelings, but the core of Keras is good, the perfect core of this design makes the system highly scalable and t
Keras mixed with TensorFlow Keras and TensorFlow using tensorfow Fly Keras
Recently, TensorFlow has updated its new version to 1.4. Many updates have been made, and it is of course important to add Tf.keras. After all, Keras for the convenience of the model building everyone is obvious to all.
Likes the
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.