with a 1x1 filter and a layer with a 3x3 filter. Then, we connect the outputs of these layers together in the channel dimension. This is equivalent to the implementation of a layer containing 1x1 and 3x3 filters in numerical terms.
We published the squeezenet configuration file in a format defined by the Caffe CNN framework. However, in addition to Caffe, there are some other CNN frameworks, including Mxnet (Chen et al., 2015a), Chainer (Tokui, 2015), Keras
would be is implied on each input. The function would run after the image is resized and augmented. The function should take one argument:one image (Numpy tensor with rank 3), and should output a Numpy tensor with the SAM E shape. Data_format=none
One of {"Channels_first", "Channels_last"}.
"Channels_last" mode means that the images should has shape (samples, height, width, channels),
"Channels_first" mode means that the images should has shape (samples, channels, height, width).
It defaults to
These images will be trained in this section, as described in the previous chapters, and we can get a good sample of the training samples. The main use is Keras.
I. Building a DataSet class
1.1 Init Complete Initialization work
def __init__ (self,path_name):
self.train_img = none
self.train_labels = None
self.valid_img = None
self.valid_labels = None
self.test_img = None
self.test_labels = non
. There is absolutely no need, and will cause the Spyder to start when the window, kernel died, and so on, this is my test, engaged a day ... "" When installing anaconda, do not install Python version 3.5, the total display GPU is not available. And do not install Spyder3 series, that is, more than Anaconda4.2.0. Instead, Python chooses 2.7,spyder to select the 2 series, which is the Anaconda4.1.1 version and below. What is the reason? Because Spyder3 always does not call the Ipythonw.exe interp
function, |a|>1, it means that the curve is getting smoother, Z-values tend to be closer to 1 or 0, which can also cause gradients to disappear.What if we can give a suitable value to W when we initialize the weights in each layer of the network, can we reduce the possibility of this gradient explosion or gradient disappearing? Let's see how to choose.One, random distribution weightsIn Keras, whose function is: k.random_uniform_variable (), let's tak
The problem is as follows:E:\project\dl\python\keras>python keras_sample.pyUsing Theano backend.Traceback (most recent):File "keras_sample.py", line 8, From Keras.preprocessing.image import ImagedatageneratorFile "D:\Program files\python_3.5\lib\site-packages\keras\preprocessing\image.py", line 9, From scipy import NdimageFile "D:\Program files\python_3.5\lib\site-packages\scipy\ndimage\__init__.py", line 1
Learning Goals
Understand multiple foundational papers of convolutional neural networks
Analyze the dimensionality reduction of a volume in a very deep network
Understand and Implement a residual network
Build a deep neural network using Keras
Implement a skip-connection in your network
Clone a repository from GitHub and use transfer learning
Learning Goalsunderstanding of multi-basis papers in convolutional neural ne
. Typically, a gradient drop involves rolling down a hill in a static loss. But with Gan, every step down the hill will change the landscape. This is a dynamic system in which the optimization process seeks not the least, but a balance between two forces . For this reason, Gan is notoriously difficult to train -making Gan work requires a lot of careful adjustment of the model architecture and training parameters.Gan implementationUse Keras to impleme
accomplished by adding sigmoid activation to the last layer of decoder:F (x) =11+e−x as an example, we take M = 100,decoder for the most popular full connection network (MLP). The definitions based on the Keras functional API are as follows:
N, m = 784, 2
Hidden_dim = 256
batch_size = M
# # encoder
z = Input (batch_shape= (Batch_size, M))
H_de coded = dense (Hidden_dim, activation= ' Tanh ') (z)
x_hat = dense (n, activation= ' sigmoid ') (h_decoded)
Pytorch is a python-based deep learning library. Pytorch Source Library of the level of abstraction is small, clear structure, the code is moderate. Compared to very engineered tensorflow,pytorch is an easy-to-start, great deep learning framework.
For the system learning Pytorch, the official provides a very good introductory tutorial, but also provides an example for deep learning, while enthusiastic netizens to share a more concise example. 1. Overview
Different from low-level libraries such a
When we learn the mature network model, such as Vgg, Inception, ResNet, etc., the first question is how to set the parameters of each layer of these models? In addition, if we want to design our own network model, how to set the parameters of each layer? If the model parameter setting error, in fact, the model also often can not run.
Therefore, we need to first understand the meaning of each layer of the model, such as the output size and the number of training parameters. After understanding, e
squeeze every drop of the system, you have to face the scary world of pointers.Fortunately, the modern C + + + writing experience is good (honestly!). )。 You can choose from one of the following methods: You can go to the bottom of the stack, use a library like CUDA to write your own code that will run directly on the GPU, or you can use TensorFlow or Caffe to access the flexible advanced API. The latter also allows you to import models written by data scientists in Python, and then run them in
Mxnet is the foundation, Gluon is the encapsulation, both like TensorFlow and Keras, but thanks to the dynamic graph mechanism, the interaction between the two is much more convenient than TensorFlow and Keras, its basic operation and pytorch very similar, but a lot of convenience, It's easy to get started with a pytorch foundation.Library import notation,From mxnet import Ndarray as Ndfrom mxnet import aut
Valueerror:negative dimension size caused by subtracting 3 from 1
The reason for this error is the problem with the picture channel.That is, "channels_last" and "Channels_first" data format problems.Input_shape= (3,150, 150) is the Theano, and TensorFlow needs to write: (150,150,3).
You can also set different back ends to adjust:
From Keras Import backend as K
k.set_image_dim_ordering (' th ') from
Keras Chinese DocumentKeras English Document 1. Brief introduction
2. Keras Basic Flow
Take handwritten digit recognition as an example 1. Define Network structure
2. Set the form of loss function
3. Model Fitting
When batch_size=1, it is a random gradient descent stochastic gradient descentWe know that stochastic gradient descent is a lot faster than 50,000 data. However, when batch_size>1, it a
(' X_test shape: ', X_test.shape) # (412L, 50L, 1L) print (' Y_test shape: ', Y_test.shape) # (412 L,) return [X_train, Y_train, X_test, Y_test]
(3) LSTM model
This article uses the Keras depth study frame, the reader may use is other, like Theano, TensorFlow and so on, the similar.
Keras LSTM Official Document
LSTM's structure can be customized, Stack lstm or bidirectional lstm
def build_model (layers):
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.