Continuous update ...1.k-Nearest Neighbor algorithmAdvantages: High precision, insensitive to outliers, no data input settingsCons: High computational complexity, high spatial complexityApplicable data range: Numerical and nominal typeApplicable scenarios:2.ID3 Decision Tree AlgorithmAdvantages: The computational complexity is not high, the output is easy to understand, the missing middle value is not sensitive, can process the irrelevant characteristic dataDisadvantage: May cause over-matching
intention. Look at the judging criteria below. Using p to express precision,r expression recall;
If we choose the criterion = (p+r)/2, then algorithm3 win, obviously unreasonable. Here we introduce an evaluation standard: F1-score.
When p = or r=0, there is f=0;
When P=1r=1, there is f=1, the largest;
Similarly, we apply F1 score to the above three algorithms, and the results are ALGORITHM1 largest, which is the best; algorithm3 the least, the worst
analyzes the theoretical basis of evolutionary optimization for most evolutionary algorithms, which often depend on the insufficiency of heuristic algorithms. By drawing on the multi-layered framework of deep learning, Professor Chen Yu has developed hierarchical Bayesian analysis and online variable decibel Dean inference method in the 4th chapter. In the 5th c
model and re-experiment to optimize them.
(ii) Criteria for numerical evaluation of machine learning algorithms
1. Cross-validation set error (accuracy)
This is a good idea, the design of the fitting function if the cross-validation set test error is very large, then certainly not a good learning algorithm;
However,
Objective
Machine learning is divided into: supervised learning, unsupervised learning, semi-supervised learning (can also be used Hinton said reinforcement learning) and so on.
Here, the main understanding of supervision and unsu
learning to organize the daily learning of machine learning algorithms, and practical problems, do more experiments, and strive to get a better learning effect, I will be firm belief, more efforts to catch up with the pace of exc
.
-Get more training samples
-Try to use a set with fewer features
-Try to obtain other features
-Try to add multiple combinations of features
-Try to reduce λ
-Add Lambda
Machine Learning (algorithm) diagnosis (Diagnostic) is a testing method that enables you to have a deep understanding of a Learning Algorithm and know what can be run and what cannot be run, it
Dr. Hangyuan Li's "Talking about my understanding of machine learning" machine learning and natural language processing
[Date: 2015-01-14]
Source: Sina Weibo Hangyuan Li
[Font: Big Small]
Calculating time, from the beginning to the present, do m
-level Click logs can be used to obtain an estimate model through a typical machine learning process, thus increasing the CTR and rate of return on internet advertising;Personalized Recommendations, or through a number of machine learning algorithms to analyze various purcha
learning algorithms which are widely used in image classification in the industry and knn,svm,bp neural networks.
Gain deep learning experience.
Explore Google's machine learning framework TensorFlow.
Below is the detailed implementation details.
First, System design
In thi
training process, because most of the machine learning algorithms are not obtained by the Analytic method, but are slowly optimized by iterative iteration. So cross-validation data can be used to monitor the performance changes during model training. Test data: After the model has been trained, the test data is used to measure the performance of the final model,
What is integrated learning, in a word, heads the top of Zhuge Liang. In the performance of classification, multiple weak classifier combinations become strong classifiers.
In a word, it is assumed that there are some differences between the weak classifiers (such as different algorithms, or different parameters of the same algorithm), which results in different classification decision boundaries, which me
For the performance of four different algorithms in different size data, it can be seen that with the increase of data volume, the performance of the algorithm tends to be close. That is, no matter how bad the algorithm, the amount of data is very large, the algorithm can perform well.When the amount of data is large, the learning algorithm behaves better:Using a larger set of training (which means that it
We will learn how to systematically improve machine learning algorithms, tell you when the algorithm is not doing well, and describe how to ' debug ' your learning algorithms and improve their performance "best practices". To optimize ma
Statement: This blog post according to Http://www.ctocio.com/hotnews/15919.html collation, the original author Zhang Meng, respect for the original.Machine learning is undoubtedly a hot topic in the field of current data analysis. Many people use machine learning algorithms more or less in their usual work. This arti
Source: https://www.cnblogs.com/jianxinzhou/p/4083921.html1. The problem of overfitting
(1)
Let's look at the example of predicting house price. We will first perform linear regression on the data, that is, the first graph on the left. If we do this, we can obtain such a straight line that fits the data, but in fact this is not a good model. Let's look at the data. Obviously, as the area of the house increases, the changes in the housing price tend to be stable, or the more you move to the right
ProfileThis article is the first of a small experiment in machine learning using the Python programming language. The main contents are as follows:
Read data and clean data
Explore the characteristics of the input data
Analyze how data is presented for learning algorithms
Choosing the righ
The motive and application of machine learningTools: Need genuine: Matlab, free: Octavedefinition (Arthur Samuel 1959):The research field that gives the computer learning ability without directly programming the problem.Example: Arthur's chess procedure, calculates the probability of winning each step, and eventually defeats the program author himself. (Feel the idea of using decision trees)definition 2(Tom
is a library that recognizes and standardizes time expressions.
Stanford spied-Use patterns on the seed set to iteratively learn character entities from untagged text
Stanford Topic Modeling toolbox-is a topic modeling tool for social scientists and other people who want to analyze datasets.
Twitter text Java-java Implementation of the tweet processing library
Mallet-Java-based statistical natural language processing, document classification, clustering, theme modeling, informat
learning Adventure JourneysklearnProvides a lot of machine learning algorithm implementation, in the learning process I can not do a full study and coverage. After many searches, I found the Youtube sentdex released video "machine Learn
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.