machine learning bootcamp

Read about machine learning bootcamp, The latest news, videos, and discussion topics about machine learning bootcamp from alibabacloud.com

Learning notes of machine learning practice: Classification Method Based on Naive Bayes,

Learning notes of machine learning practice: Classification Method Based on Naive Bayes, Probability is the basis of many machine learning algorithms. A small part of probability knowledge is used in the decision tree generation process, that is, to count the number of time

Stanford CS229 Machine Learning course Note six: Learning theory, model selection and regularization

Anyone who knows a little bit about supervised machine learning will know that we first train the training model, then test the model effect on the test set, and finally deploy the algorithm on the unknown data set. However, our goal is to hope that the algorithm has a good classification effect on the unknown data set (that is, the lowest generalization error), why the model with the least training error w

Stanford University Machine Learning public Class (II): Supervised learning application and gradient descent

mathematical expression was unfolded using Taylor's formula, and looked a bit ugly, so we compared the Taylor expansion in the case of a one-dimensional argument.You know what's going on with the Taylor expansion in multidimensional situations.in the [1] type, the higher order infinitesimal can be ignored, so the [1] type is taken to the minimum value,should maketake the minimum-this is the dot product (quantity product) of two vectors, and in what case is the value minimal? look at the two vec

Course three (structuring machine learning Projects), second week (ML Strategy (2))--0.learning goals

Tags: deviation chinese data cts You multitasking performance GPO ESCLearning Goals Understand what multi-task learning and transfer learning is Recognize bias, variance and data-mismatch by looking in the performances of your algorithm on train/dev/test sets "Chinese Translation"Learning GoalsLearn what multi-tasking

Robot Learning Cornerstone (Machine learning foundations) Learn Cornerstone Job three q13-15 C + + implementation

Hello everyone, I am mac Jiang, today and everyone to share the coursera-ntu-machine learning Cornerstone (Machines learning foundations)-Job three q6-10 C + + implementation. Although there are many great gods in many blogs have given the implementation of Phython, but given the C + + implementation of the article is significantly less, here for everyone to prov

Robot Learning Cornerstone (Machine learning foundations) Learn Cornerstone Job three q18-20 C + + implementation

Hello everyone, I am mac Jiang, today and everyone to share the coursera-ntu-machine learning Cornerstone (Machines learning foundations)-Job three q18-20 C + + implementation. Although there are many great gods in many blogs have given the implementation of Phython, but given the C + + implementation of the article is significantly less, here for everyone to pro

Machine learning Algorithms

computer, and each instruction represents one or more operations.Give a simple example, and you can use it in your life. Now make a small game, a on the paper randomly wrote a 1 to 100 integer, b to guess, guess the game is over, guess the wrong word a will tell B guess small or big. So what will b do, the first time you must guess 50, guess the middle number. Why is it? Because of this worst case scenario (log2100">Log2log2100) Six or seven times can be guessed.This is a binary search, which m

"Feasibility of learning" heights Field machine learning Cornerstone

The core of this section is how to relate the hoeffding inequalities to the feasibility of machine learning.This PAC is very image and accurate, describing the "current possibility is probably right", that is, a probability of the last.Hoeffding's connection to machine learning is:If the number of samples is large enough, the

Robot Learning Cornerstone (Machine learning foundations) Learn the cornerstone of the work after three lessons to solve the problem

Today we share the coursera-ntu-machine learning Cornerstone (Machines learning foundations)-exercise solution for job three. I encountered a lot of difficulties in doing these topics, when I find the answer on the Internet but can not find, and Lin teacher does not provide answers, so I would like to do their own questions on how to think about the writing down,

Machine Learning (I) Bayesian Rule and Concept Learning

Bayesian LearningAlgorithmThere are two reasons for applying it to machine learning: first, Bayesian learning can calculate the explicit hypothesis probability, as shown in Naive Bayes classifier. Second: Bayesian method provides a means for understanding other methods of machine

Machine Learning---Computational learning theory

If you are not a math department, don't look at this.Because the following is used to demonstrate the correctness of machine learning methods, you can use machine learning to get the results you want. For those who program or use this method, however, you can just use it with confidence and boldness. Just like you know

Python Scikit-learn Machine Learning Toolkit Learning Note: cross_validation module

meaning of these methods, see machine learning textbook. One more useful function is train_test_split.function: Train data and test data are randomly selected from the sample. The invocation form is:X_train, X_test, y_train, y_test = Cross_validation.train_test_split (Train_data, Train_target, test_size=0.4, random_state=0)Test_size is a sample-to-account ratio. If it is an integer, it is the number of sam

Some common algorithms for machine learning

Here are some general basics, but it's still very useful to actually do machine learning. As the key to the application of machine learning on current projects such as recommender systems and DSPs, I think data processing is very important because in many cases, machine

Robotic Learning Cornerstone (Machine learning foundations) Learn Cornerstone job Two after class exercise solution

Hello everyone, I am mac Jiang, first of all, congratulations to everyone Happy Ching Ming Festival! As a bitter programmer, Bo Master can only nest in the laboratory to play games, by the way in the early morning no one sent a microblog. But I still wish you all the brothers to play happy! Today we share the coursera-ntu-machine learning Cornerstone (Machines learning

Python data visualization, data mining, machine learning, deep learning common libraries, IDES, etc.

First, the visualization method Bar chart Pie chart Box-line Diagram (box chart) Bubble chart Histogram Kernel density estimation (KDE) diagram Line Surface Chart Network Diagram Scatter chart Tree Chart Violin chart Square Chart Three-dimensional diagram Second, interactive tools Ipython, Ipython Notebook plotly Iii. Python IDE Type Pycharm, specifying a Java swing-based user interface PyDev, SWT-based

Machine learning needs to read books _ Learning materials

If you only want to read a book, then recommend Bishop's Prml, full name pattern recognition and Machine Learning. This book is a machine learning Bible, especially for the Bayesian method, the introduction is very perfect. The book is also a textbook for postgraduate courses in ma

Generative learning algorithm Stanford machine learning notes

distribution with the mean value of μ 0 and the covariance matrix of Σ, X | y = 1 follows the multivariate Gaussian distribution where the mean value is μ1 and the covariance matrix is Σ (This will be discussed later ). The log function for maximum likelihood estimation is recorded as L (ø, μ 0, μ 1, Σ) = Log 1_mi = 1 p (x (I) | Y (I); μ 0, μ 1, Σ) P (Y (I); ø), our goal is to obtain the parameter ø, μ 0, μ 1, Σ to make L (ø, μ 0, 1, Σ) to obtain the maximum value. The values of the four para

Today, we will start learning pattern recognition and machine learning (PRML), Chapter 1.2, probability theory (I)

Original writing, reproduced please indicate the source of http://www.cnblogs.com/xbinworld/archive/2013/04/25/3041505.html Today I will start learning pattern recognition and machine learning (PRML), Chapter 1.2, probability theory (I) This section describes the essence of probability theory in the entire book, highlighting an uncertainty understanding

Machine Learning-Stanford: Learning note 6-Naive Bayes

Naive BayesianThis course outline:1. naive Bayesian- naive Bayesian event model2. Neural network (brief)3. Support Vector Machine (SVM) matting – Maximum interval classifierReview:1. Naive BayesA generation learning algorithm that models P (x|y).Example: Junk e-mail classificationWith the mail input stream as input, the output Y is {0,1},1 as spam, and 0 is not junk e-mail.Represents the message text as an

Robotic Learning Cornerstone (Machine learning foundations) Learn Cornerstone job Four after class exercise solution

Hello everyone, I am mac Jiang, today and you share the coursera-ntu-machine learning Cornerstone (Machines learning foundations)-job four of the exercise solution. I encountered a lot of difficulties in doing these topics, when I find the answer on the Internet but can not find, and Lin teacher does not provide answers, so I would like to do their own questions

Total Pages: 15 1 .... 11 12 13 14 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.