Learning notes of machine learning practice: Implementation of decision trees,
Decision tree is an extremely easy-to-understand algorithm and the most commonly used data mining algorithm. It allows machines to create rules based on datasets. This is actually the process of machine
Brief introductionMachine learning algorithms are algorithms that can be learned from data and improved from experience without the need for human intervention. Learning tasks include learning about functions that map input to output, learning about hidden structures in unlabeled data, or "instance-based
meaningless.Thus, further, the following derivation is made:As for why we use the 2 norm here, I understand mainly for the sake of presentation convenience.The meaning of such a big paragraph after each round of algorithm strategy iteration, we require the length of the W to increase the growth rate is capped. (Of course, it is not necessarily the growth of each round, if the middle of the expansion of the equation is relatively large negative, it may also decrease)The above two ppt together to
17.1 Study of large data sets17.2 Random Gradient Descent method17.3 Miniature Batch Gradient descent17.4 Stochastic gradient descent convergence17.5 Online Learning17.6 mapping simplification and data parallelism
17.1 Learning from large data sets
17.2random Gradient Descent method
17.3miniature Batch gradient descent
17.4stochastic gradient descent convergence
17.5Online Learning
would sort an array.
Perform an indirect sort along the given axis using the algorithm specified by the kind keyword. It returns an array of indices of the same shape as a , the index data along the given axis in sorted order.
Returns an array of subscripts after a small to large order. Axis represents the dimension to compare, which defaults to the last dimension. Some function learning in 2.pythonThe reload () function, which needs to be i
Brief introduction
In recent years, because of the cloud platform, large data, high-performance computing, machine learning and other areas of progress, artificial intelligence also fire up. Face recognition, speech recognition and other related functions have been proposed, but can form products and large-scale use of small. Because it is difficult for non-professional professionals to achieve a complete s
Reference:http://www.52nlp.cn/python-%e7%bd%91%e9%a1%b5%e7%88%ac%e8%99%ab-%e6%96%87%e6%9c%ac%e5%a4%84%e7%90%86 -%e7%a7%91%e5%ad%a6%e8%ae%a1%e7%ae%97-%e6%9c%ba%e5%99%a8%e5%ad%a6%e4%b9%a0-%e6%95%b0%e6%8d%ae%e6%8c%96%e6%8e% 98A Python web crawler toolsetA real project must start with getting the data. Regardless of the text processing, machine learning and data mining, all need data, in addition to through som
steepness factor to these nonlinear functions, adjust the saturation region of the nonlinear function, adjust the shape of the training loss function, and adjust the parameter adjustment out of the saturated area.For the sigmoid function, the steepness factor (recorded as λ) can be set as follows: Δs (x) =1/(1+exp (-x/λ))2.1.4 Using numerical optimization techniquesIn order to improve the convergence speed and stability of neural network training, we can also use the numerical optimization algo
I hear that Hulu machine learning is better than a winter weekend.You can click "Machine Learning" in the menu bar to review all the previous installments of this series and comment on your thoughts and comments.At the same time, in order to make everyone better understand Hulu, the menu "about Hulu" also made the corr
sentence
The main task of pattern recognition is to design a classifier that is invariant to these transformations, with the following three techniques:
Structural invariance: The design of the structure has taken into account the insensitivity to the transformation, and the disadvantage is that the number of network connections becomes large
Training invariance: Different sample training parameters for the same target; disadvantage: It is not guaranteed that the tr
. Optimal interval classifierThe optimal interval classifier can be regarded as the predecessor of the support vector machine, and is a learning algorithm, which chooses the specific W and b to maximize the geometrical interval. The optimal classification interval is an optimization problem such as the following:That is, select Γ,w,b to maximize gamma, while satisfying the condition: the maximum geometry in
statistical tests for each feature:false positive rate SELECTFPR, false discovery rate selectfdr, or family wise error selectfwe. The document says that if you use a sparse matrix, only the CHI2 indicator is available, and everything else must be transformed into the dense matrix. But I actually found that f_classif can also be used in sparse matrices.Recursive Feature elimination: Looping feature selectionInstead of examining the value of a variable individually, it aggregates it together for
17.1 Study of large data sets17.2 Random Gradient descent method17.3 Miniature Batch gradient descent17.4 Stochastic gradient descent convergence17.5 Online Learning17.6 mapping Simplification and data parallelism 17.1 Study of large data sets 17.2 Stochastic gradient descent method 17.3miniature Batch gradient descent 17.4 stochastic gradient descent convergence 17.5 Online learning 17.6 mapping simplification and data parallelism Ng Lesson 17th: M
This article is translated from awesome-machine-learning by bole online-toolate. Welcome to the technical translation team. For more information, see the requirements at the end of the article.
This article has compiled some frameworks, libraries, and software (sorted by programming language) in the machine learning fi
How to select Super Parameters in machine learning algorithm: Learning rate, regular term coefficient, minibatch sizeThis article is part of the third chapter of "Neural networks and deep learning", which describes how to select the value of the initial hyper-parameter in the machi
Tags: introduction baidu machine led to the OSI day split data setI. Introduction TO MACHINE learning
Defined
The machine learning definition given by Tom Mitchell: For a class of task T and performance Metric p, if the computer program is self-perfecting wit
(Preface)I wrote a machine learning ticket yesterday. Let's write one today. This book is mainly used for beginners and is very basic. It is suitable for sophomores and juniors. Of course, it is also applicable if you have not read machine learning before your senior or senior. Mac
This article has compiled some frameworks, libraries, and software (sorted by programming language) in the machine learning field ).C ++ Computer Vision
CCV-Machine Vision Library Based on C Language/provided Cache/core, novel machine vision Library
Opencv-it provides C ++, C, Python, Java and Matlab interfaces, and
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.