Recommended BooksHere is a list of books which I had read and feel it was worth recommending to friends who was interested in computer Scie nCE.Machine Learningpattern recognition and machine learningChristopher M. BishopA new treatment of classic machine learning topics, such as classification, regression, and time series analysis from a Ba Yesian perspective. I
networks and overfitting:
The following is a "small" Neural Network (which has few parameters and is easy to be unfitted ):
It has a low computing cost.
The following is a "big" Neural Network (which has many parameters and is easy to overfit ):
It has a high computing cost. For the problem of Neural Network overfitting, it can be solved through the regularization (λ) method.
References:
Machine Learning
Part I: ClassificationThe first two parts of the book focus on supervised Learning (supervisedieaming). In the process of supervising learning, we only need to give the input sample set , and the machine can push the possible results of the specified target variable from it. Supervised
algorithms that can be used to allow programmers to experiment with tools and libraries of programming functions. The most representative of the book is: "Programming collective Intelligence", "Machine learning for Hackers", "Hackersand Data mining:practical Machine learning
Recently intermittent toss on VMware installed 64-bit Ubuntu virtual system on the learning of Linux and write simple code, also familiar with the image recognition program. Experienced the following process, is now recorded for future reference.1. Own two notebooks, a Dell ultra-polar Ben 6430U, SSD hard disk 128G, performance can also be a bit small hard disk, Thinkpad T410, hard disk, too heavy. Super-great Ben is really light. Tangled or want to c
curve to fit the data to avoid the occurrence of overfitting and under-fitting phenomenon.Training and testingWe trained to get a model, here is the two curves we fit. In order to verify the accuracy of our training model, we can take part of the training data and use it as test data during the initial training, and not only judge the model by the approximation error.SummarizeThis section is introduced as a small experiment of machine
has brought huge amounts of data in many fields such as medicine, biology, finance and marketing. Understanding these data is a challenge that has led to the development of new tools in the field of statistics and extends to new areas such as data mining, machine learning and bioinformatics.Machine learning (Mitchell)
Machine learning"
Description: Java machine learning-related platforms and open-source machine learning libraries, sorted by big data, NLP, computer vision, and deep learning
This article focuses on the contents of the 1.2Python libraries and functions in the first chapter of the Python machine learning time Guide. Learn the workflow of machine Learning.I. Acquisition and inspection of dataRequests getting dataPandans processing Data1 ImportOS2 ImportPandas as PD3 ImportRequests4 5PATH = R'E:/python
Machine learning practices in python3.x and python machine learning practices
Machine Learning Practice this book is written in the python2.x environment, while many functions and 2 in
intervention on the results of model training it's a lever. Model does not understand the business, really understand the business is people. What the model can do is to learn from the cost function and sample, and find the optimal fit of the current sample. Therefore, machine learning workers should be appropriate to the needs of the characteristics of some human intervention and "guidance", such as the h
that if the sampled data is biased, then the effect of learning is also biased, this situation is called sampling deviation.In reality, we need training data and test data from the same distribution.To avoid this problem, what we can do is to understand the test environment, so that the training environment or training data and test environment as close as possible.Data snooping (snooping)Any process you use data is indirectly prying into the data, s
clusters. Clustering is when you don't know exactly how many classes the target database has, and you want to make all the records into different classes or clusters, and in this case, The similarity of a metric (for example, distance) is minimized between the same cluster and maximized among different clustering classes. Unlike classification, unsupervised learning does not rely on a predefined class or band-mark training instance, which needs to be
academia. Let's focus on the relationship between statistics and computer science. Larry Wasserman, a professor at the CMU Department of Statistics, has recently been selected as a Fellow of the American Academy. He wrote a book with a very overbearing name, all of Statistics. There is a very interesting description of statistics and machine learning in the intr
", a book written by Chinese scientists, is quite understandable.6. "Managing gigabytes", a good book of information retrieval.7. "Information theory:inference and Learning Algorithms", reference books, relatively deep.Relevant mathematical basis (reference books, not suitable to read through):1. Linear algebra: This reference
This article focuses on the contents of the 1.2Python libraries and functions in the first chapter of the Python Machine learning Time Guide. Learn the workflow of machine learning.I. Acquisition and inspection of dataRequests getting dataPandans processing Data1 ImportOS2 ImportPandas as PD3 ImportRequests4 5PATH = R'E:/python
Directory
1. Introduction
1.1. Overview
1.2 Brief History of machine learning
1.3 Machine learning to change the world: a GPU-based machine learning example
1.3.1 Vision recognition based on depth neural network
1.3.2 Alphago
1.3.
of the current node is the middle half of the distance of all its leaf nodes is float (NUMLEAFS)/2.0/plottree.totalw* 1, but since the start Plottree.xoff assignment is not starting from 0, but the left half of the table, so also need to add half the table distance is 1/2/plottree.totalw*1, then add up is (1.0 + float (numleafs))/2.0/ Plottree.totalw*1, so the offset is determined, then the X position becomes Plottree.xoff + (1.0 + float (numleafs))/2.0/PLOTTREE.TOTALW3, for Plottree function p
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.