machine learning with python cookbook pdf

Discover machine learning with python cookbook pdf, include the articles, news, trends, analysis and practical advice about machine learning with python cookbook pdf on alibabacloud.com

"Machine learning experiment" learns python to classify real-world data

print ' Best Feature index:\t ', bestfeatureindex print ' Best thresh old:\t\t ', Bestthreshold ' return{' Dim ': Bestfeatureindex,' Thresh ': Bestthreshold,' accuracy ': Bestaccuracy} def Apply_model(Features,labels,model):Prediction = (features[:,model[' Dim ']] > model[' Thresh '])returnPrediction#-----------Cross validation-------------Error =0.0 forEiinchRange (len (irisfeatures)):# Select All and the one at position ' ei ':Training = Np.ones (len (irisfeatures), bool) Training[ei] =Fal

Mac on the Python machine learning environment to build __python

System: OS X 10.11.6 The MAC system has its own Python2.7, using the Easy_install command with its own system to install the modules online. If you need to use the PYTHON3 environment, python3.5 is invoked at the terminal input Python3 after installing the Python3.5.1, view Python version Python 2, install NumPyNumPy is a Python package. It represents "Numer

Machine learning Path: Python practice lifting Tree xgboost classifier

training sample Ax = titanic[["Pclass"," Age","Sex"]] aty = titanic["survived"] - #The average complement of the acquired age space -x[" Age"].fillna (x[" Age"].mean (), inplace=True) - - #split training data and test data -X_train, X_test, y_train, y_test =train_test_split (x, in y, -test_size=0.25, toRandom_state=33) + #extracting dictionary features for vectorization -VEC =Dictvectorizer () theX_train = Vec.fit_transform (X_train.to_dict (orient="Record")) *X_test = Vec.transform (X_test.to

Machine learning path: Python linear regression overfitting L1 and L2 regularization

= Polynomialfeatures (degree=4)#4-time polynomial feature generator -X_train_poly4 =poly4.fit_transform (X_train) Wu #Building Model Predictions -Regressor_poly4 =linearregression () About Regressor_poly4.fit (X_train_poly4, Y_train) $X_test_poly4 =poly4.transform (x_test) - Print("four-time linear model prediction score:", Regressor_poly4.score (X_test_poly4, Y_test))#0.8095880795746723 - - #learning and predicting using L1 norm regularization line

"Play machine learning with Python" KNN * code * One

): # Extend the Input feature vector as a feature matrix linenum = featurematrix.shape[0] featurematrixin = Np.tile ( Featurevectorin, (linenum,1)) # Calculate the Euclidean distance between the matrix Diffmatrix = featurematrixin -Featurematrix Sqdiffmatrix = Diffmatrix * * 2 Distancevaluearray = Sqdiffmatrix.sum (Axis=1) Distancevaluearray = Distancevaluearray * * 0.5 return DistancevaluearrayUsed in the numpy of the more distinctive things. The practice is to first

Machine learning Path: The python k nearest Neighbor classifier Iris classification prediction

classes in the data. - -Many, many more ... the the a total of 150 data samples the evenly distributed over 3 subspecies the 4 petals per sample, calyx shape Description - " " the the " " the 2 dividing the training set and the test set94 " " theX_train, X_test, y_train, y_test =train_test_split (Iris.data, the Iris.target, thetest_size=0.25,98Random_state=33) About - " "101 3 K Nearest Neighbor Classifier learning model and prediction102 " "10

Machine learning in coding (Python): Use cross-validation "Select model Hyper-parameter"

# hyperparameter Selection Loopscore_hist = []cvals = [0.001, 0.003, 0.006, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.1]for C In Cvals: model. c = c = score = Cv_loop (Xt, y, model, N) score_hist.append ((score,c)) print "C:%f Mean AUC:%f"% (C, score) Best C = sorted (score_hist) [ -1][1]print "Best C Value:%f"% (BESTC)From KaggleCopyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced.Machine learnin

Machine learning Combat-Learn to read Python code (5)

) p (CI)/P (W)Calculate a specific document W belongs to C0 (insulting document) or C1 (non-insulting document), statistics the probability of each word in this document in two different categories, quantified by the Bayesian formula, that is, each word in a particular document in the p0v or p1v to find the corresponding word probability, Multiply these probabilities, i.e. P (W0|CI) p (W1|CI) p (w2|ci). P (WN|CI), multiplied by P (CI), the final result is two probability values, the probability

Machine learning python for logistic regression

[21]): Errorcount + = 1 #计算错误率 errorrate = (Float (errorcou NT)/numtestvec) print "The error rate of this test is:%f"% errorrate return errorratedef multitest (): numtests = 10; errorsum=0.0 for K in range (numtests): Errorsum + = Colictest () print "After%d iterations the average error R ATE is:%f "% (numtests, errorsum/float (numtests))Implementation results:The error rate of this test is:0.358209the error rate of this test is:0.417910the error rate of this test is:0.268657th E error r

Python machine learning gradient lifting tree

# like random forests, tree-based decision trees are built in a continuous way, with a very small depth of max_depthFrom sklearn.ensemble import GradientboostingclassifierFrom sklearn.datasets import Load_breast_cancerFrom sklearn.model_selection import Train_test_splitCancer=load_breast_cancer ()X_train,x_test,y_train,y_test=train_test_split (cancer.data,cancer.target,random_state=0)Gbrt=gradientboostingclassifier () #模型不做参数调整Gbrt.fit (X_train,y_train)Print (Gbrt.score (x_train,y_train))Print (

Python Machine Learning

[:, 1].max () + 1 xx1, xx2 = Np.meshgrid (Np.arange (X1_min, X1_max, resolution), Np.aran GE (X2_min, X2_max, resolution)) Z = Classifier.predict (Np.array ([Xx1.ravel (), Xx2.ravel ()]). T) Z = Z.reshape (xx1.shape) Plt.contourf (xx1, xx2, Z, alpha=0.4, Cmap=cmap) Plt.xlim (Xx1.min (), Xx1.max ()) Plt.ylim (Xx2.min (), Xx2.max ()) # Plot all samples for IDX, C1 in enumerate (Np.unique (y)): Print Idx,c1 Plt.scatter (X=x[y = = C1, 0], Y=x[y = = C1, 1], alpha=0.8, C=cmap (IDX), MARKER=M

Model Evaluation and parameter tuning in Python machine learning

', Standardscaler ()), ('CLF', Logisticregression (penalty='L2', random_state=0)]) train_sizes, train_scores, Test_scores= Learning_curve (ESTIMATOR=PIPE_LR, X=x_train, Y=y_train, Train_sizes=np.linspace (0.1, 1.0, ten), cv=10, N_jobs=1) Train_mean= Np.mean (Train_scores, Axis=1) TRAIN_STD= NP.STD (Train_scores, Axis=1) Test_mean= Np.mean (Test_scores, Axis=1) TEST_STD= NP.STD (Test_scores, Axis=1) Plt.plot (train_sizes, Train_mean, color='Blue', marker='0', Markersize=5, label='Training Accurac

2018AI Artificial Intelligence basic Combat Python machine deep learning algorithm video tutorial

understand computer knowledge, psychology and philosophy. Artificial intelligence consists of a very wide range of sciences, consisting of a variety of fields, such as machine learning, computer vision, and so on, in general, one of the main goals of AI research is to make machines capable of doing complex work that normally requires human intelligence. But different times, different people's understanding

Machine learning and Neural Networks (ii): Introduction of Perceptron and implementation of Python code __python

This article mainly introduces the knowledge of Perceptron, uses the theory + code practice Way, and carries out the learning of perceptual device. This paper first introduces the Perceptron model, then introduces the Perceptron learning rules (Perceptron learning algorithm), finally through the Python code to achieve

Python machine learning and practical knowledge Summary

The task of supervised learning in machine learning focuses on predicting the target/marker of an unknown sample based on existing empirical knowledge.According to the different types of target predictor variables, we divide the task of supervised learning into two categories: Classification

Machine learning path: Python linear regression linearregression, stochastic parametric regression sgdregressor forecast Boston rates

(Ss_y.inverse_transform (y_test), Ss_y.inverse_transform (lr_y_predict)) $ Print("the mean square error of the linear is:", Lr_mse) -Lr_mae =Mean_absolute_error (Ss_y.inverse_transform (y_test), Ss_y.inverse_transform (lr_y_predict)) - Print("the average absolute error of the linear is:", Lr_mae) - A #evaluation of the SGD model +Sgdr_score =Sgdr.score (x_test, y_test) the Print("the default evaluation value for SGD is:", Sgdr_score) -sgdr_r_squared =R2_score (y_test, sgdr_y_predict) $ Print("

Machine learning path: Python regression tree decisiontreeregressor forecast Boston Rates

regression tree is:", Dtr.score (X_test, y_test)) - Print("the r_squared values for the flat regression tree are:", R2_score (Y_test, dtr_y_predict)) - Print("the mean square error of the regression tree is:", Mean_squared_error (Ss_y.inverse_transform (y_test), - Ss_y.inverse_transform (dtr_y_predict))) A Print("the average absolute error of the regression tree is:", Mean_absolute_error (Ss_y.inverse_transform (y_test), + Ss_y.inverse_transform (dtr_y_predict))) the - " " $ the default evalua

The path of machine learning: Python polynomial feature generation polynomialfeatures and over-fitting

.score (X_train_poly2, Y_train))#0.9816421639597427Two-time linear regression model fitted curves:The fitting degree is better than 1 linear fitting.The following 4 linear regression models are performed:1 #four-time linear regression model fitting2Poly4 = Polynomialfeatures (degree=4)#4-time polynomial feature generator3X_train_poly4 =poly4.fit_transform (X_train)4 #Building Model Predictions5Regressor_poly4 =linearregression ()6 Regressor_poly4.fit (X_train_poly4, Y_train)7 #draw a graph of 2

Machine learning Path: The Python decision tree classification predicts whether the Titanic passengers survived

AboutDTC =Decisiontreeclassifier () $ #Training - Dtc.fit (X_train, Y_train) - #Predicting saved results -Y_predict =dtc.predict (x_test) A + " " the 4 Model Evaluation - " " $ Print("accuracy:", Dtc.score (X_test, y_test)) the Print("Other indicators: \ n", Classification_report (Y_predict, Y_test, target_names=['died','survived'])) the " " the accuracy: 0.7811550151975684 the Other indicators: - Precision recall F1-score support in the died 0.91 0.78 0.84 236 the survived 0.58 0.80 0.67 Abo

Machine learning Path: Python comprehensive classifier random forest classification gradient elevation decision tree classification Titanic survivor

", Classification_report (Gbc_y_predict, Y_test, target_names=['died','survived']))103 104 " " the Single decision tree accuracy: 0.7811550151975684106 Other indicators:107 Precision recall F1-score support108 109 died 0.91 0.78 0.84 236 the survived 0.58 0.80 0.67111 the avg/total 0.81 0.78 0.79 329113 the Random forest accuracy: 0.78419452887538 the Other indicators: the Precision recall F1-score support117 118 died 0.91 0.78 0.84 237119 survived 0.58 0.80 0.68 - 121 avg/total 0.82 0.78 0.79

Total Pages: 13 1 .... 9 10 11 12 13 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.