machine learning with python cookbook pdf

Discover machine learning with python cookbook pdf, include the articles, news, trends, analysis and practical advice about machine learning with python cookbook pdf on alibabacloud.com

Machine learning Python Implementation AdaBoost

" from NumPy Import *def loadsimpdata (): Datmat = Matrix ([[[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) Classlabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datmat,classlabelsdef loaddataset (fileName): #general function to Parse tab-delimited Floats numfeat = Len (open (FileName). ReadLine (). Split (' \ t ')) #get number of fields Datamat = [ ]; Labelmat = [] fr = open (fileName) for line in Fr.readlines (): Linearr =[] curline = Line.strip (). Split (' \ t ') for I in

Machine learning Python Implementation AdaBoost

such as the followingHere is an example of a Python implementation:#-*-coding:cp936-*-"Created on Nov, 2010Adaboost was short for Adaptive Boosting@author:peter" from NumPy Import *def loadsimpdata (): Datmat = Matrix ([[[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) Classlabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datmat,classlabelsdef loaddataset (fileName): #general function to Parse tab-delimited Floats numfeat = Len (open (File

Python machine learning notes: Using Keras for multi-class classification

Keras is a python library for deep learning that contains efficient numerical libraries Theano and TensorFlow. The purpose of this article is to learn how to load data from CSV and make it available for keras use, how to model the data of multi-class classification using neural network, and how to use Scikit-learn to evaluate Keras neural network models.Preface, the concept description of two classificatio

Machine learning notes about Python implementation Kmean algorithm

()--------------------------------------------------------------------------------------------------------------- ---------------------------------------At lastCode SummaryImport NumPy as Npimport cv2from matplotlib import pyplot as PltX = Np.random.randint (25,50, (25,2)) Y = Np.random.randint (6 0,85, (25,2)) Z = Np.vstack ((x, y)) # Convert to np.float32z = Np.float32 (Z) plt.hist (z,100,[0,100]), Plt.show () # define Criteria and apply Kmeans () criteria = (CV2. Term_criteria_eps + CV2. Ter

Machine learning in coding (Python): Use greedy search "for feature selection"

Print "Performing greedy feature selection ..." score_hist = []n = 10good_features = Set ([]) # greedy Feature selection LOOPW Hile Len (score_hist) if f not in good_features: feats = List (good_features) + [f] Xt = Sparse.hstack ([xts[j] for J in feats]). TOCSR () C5/>score = Cv_loop (Xt, y, model, N) Scores.append ((score, F)) print "Feature:%i Mean AUC:%f"% (f, score) g Ood_features.add (sorted (scores) [ -1][1]) Score_hist.append (sorted

Machine learning in coding (Python): Merge feature by keyword, delete useless feature, convert to NumPy array

=true) # drop useless columns and create LABELSIDX = test.id.values.astype (int) test = Test.drop ([' id ', ' tube_assembly_id ', ' quote_date '), Axis = 1) labels = Train.cost.valuestrain = Train.drop ([' Quote_date ' , ' cost ', ' tube_assembly_id '], Axis = 1) # Convert data to NumPy Arraytrain = Np.array (train) test = Np.array (test)From:kaggle Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced. Ma

"Python" Machinelearning Machine Learning Introduction _ Efficiency Comparison

Efficiency comparison:It's a cliché, but this time with a new module,Run Time Test Module Timeti:1 ImportTimeit2 3normal = Timeit.timeit ('sum (x*x for x in range )', number=10000)4NATIVE_NP = Timeit.timeit ('sum (na*na)',#Repeating part5setup="import numpy as np; na = Np.arange (+)",#Setup runs only once6number=10000)#Number of repetitions7GOOD_NP = Timeit.timeit ('Na.dot (NA)',8setup="import numpy as np; na = Np.arange (+)",9number=10000)Ten One Print('Native Run time:', Normal,'\ n', A

[Machine Learning Python Practice (5)] Sklearn for Integration

90avg/total 0.82 0.78 0.79 329The accuracy of gradient tree boosting is 0.790273556231 Precision recall f1-score support 0 0.92 0.78 0.84 239 1 0.58 0.82 0.68 90avg/total 0.83 0.79 0.80 329Conclusion:Predictive performance: The gradient rise decision tree is larger than the random forest classifier larger than the single decision tree. The industry often uses the stochastic forest c

Data preprocessing of Python machine learning

#数据预处理方法, mainly dealing with the dimension of data and the problem of the same trend.Import NumPy as NPFrom Sklearn Import preprocessing#零均值规范Data=np.random.rand (3,4) #随机生成3行4列的数据Data_standardized=preprocessing.scale (data) #对数据进行归一化处理, that is, each value minus the mean divided by the variance is primarily used for SVM#线性数据变换最大最小化处理Data_scaler=preprocessing. Minmaxscaler (feature_range= (0,1)) #选定区间 (0,1), raw Data-min/(max-min)Data_scaled=data_scaler.fit (data)#数据标准化处理normalizeddata_normaliz

The implementation of the K-means clustering algorithm in "machine learning combat" by Python

clustering are generally relatively random, generally not very ideal, and the final result tends to be indistinguishable from natural clusters, in order to avoid this problem, the binary K mean clustering algorithm is used in this paper .The implementation of the binary K-means clustering Python is given in the next blog post.Complete code and test data can be obtained here, or you want to get the source from the connection, because the copy code fro

Python Machine Learning Package

Common Python machine learning packagesNumpy: A package for scientific computingPandas: Provides high-performance, easy-to-use data structures and data analysis toolsSCIPY: Software for math, science and engineeringStatsmodels: Used to explore data, estimate statistical models, statistical testsScikit-learn: Provides classic

10 Popular Python Machine learning libraries __python

1.Pipenv Pipenv is a Kenneth Reitz amateur project designed to integrate other software packages, such as NPM and yarn, into Python. It does not need to install virtualenv, Virtualenvwrapper, do not manage requirements.txt files, and does not have to ensure the reproducibility of dependent versions. With pipenv, you can specify the dependencies in the Pipfile. The tool generates a Pipfile.lock file that makes your build more deterministic and avoids b

Python Machine learning-clustering

K-means Clustering algorithm Test: #-*-coding:utf-8-*-"""Created on Thu 10:59:20 2017@author:administrator"""" "There are eight major variable data on the average annual consumer spending of urban households in 31 provinces in 1999, with eight variables: food, clothing, household equipment supplies and services, health care, transportation and communications, cultural services for recreational education, residential and miscellaneous goods and services. The 31 provinces are c

Alexander's directory analysis of Python machine learning.

Boring, adapt to the trend, learn the Python machine learning it.Buy a book, first analyze the catalogue it.1. The first chapter is the Python machine learning ecosystem.1.1. Data science or m

Implementation of knn-k nearest neighbor algorithm for the Python implementation of machine learning algorithm

1. Background In the future, the blogger will update the machine learning algorithm and its Python simple implementation regularly every week. Today's algorithm is the KNN nearest neighbor algorithm. KNN algorithm is a kind of supervised learning classifier class algorithm. What is supervised

0 Basics to Mastery: Python Big Data and machine learning pandas-data manipulation

Here is still to recommend my own built Python development Learning Group: 483546416, the group is the development of Python, if you are learning Python, small series welcome you to join, everyone is the software Development Party, not regularly share dry goods (only

Python machine learning the latest algorithm

you separate a room with a wall, you're trying to create two different populations in the same room. Similarly, decision trees are dividing the population into different groups as much as possible. For more information, see: Simplification of decision tree algorithms Python code 7, K mean value algorithm k– mean algorithm is a kind of unsupervised learning algorithm, it can solve the problem of clustering.

Machine Learning Python environment settings

[Email protected]:~# pip Install-u Scikit-learnNo problemSuccessfully installed scikit-learncleaning up ...Other workarounds see: http://www.xuebuyuan.com/1157602.htmlInstalling NETWORKXwget https://pypi.python.org/packages/source/n/networkx/networkx-1.10.tar.gz#md5= EB7A065E37250A4CC009919DACFE7A9DCD Networkx-1.10python setup.py InstallTest it:[Email protected]:~/networkx-1.10# pip listmatplotlib (1.3.1) networkx (1.10) numpy (1.8.2) pip (1.5.4) Scikit-learn ( 0.16.1) scipy (0.13.3) setuptools

The path of machine learning: The main component analysis of the Python feature reduced dimension PCA

the data after dimensionality reduction -Pca_svc =linearsvc () the #Learning - Pca_svc.fit (Pca_x_train, Y_train)WuyiPca_y_predict =pca_svc.predict (pca_x_test) the - #4 Model Evaluation Wu Print("accuracy of raw data:", Svc.score (X_test, y_test)) - Print("other ratings: \ n", Classification_report (Y_test, Y_predict, Target_names=np.arange (10). Astype (str ))) About $ Print("data accuracy rate after dimensionality reduction:", Pca_svc.score (Pca

Ubuntu Installation Python machine learning Package

1. Install Pipmkdir ~/vi ~/.pip/pip.conf[global]trusted-host=mirrors.aliyun.comindex -url=http://https://bootstrap.pypa.io/get-pip.pysudo python get---9.0. 1 from/usr/local/lib/python2. 7 2.7)2. Install the Machine learning PackageThe following installation package is not chaotic due to dependenciessudo Install sudo install sudo install sudo install scipyError:S

Total Pages: 13 1 .... 8 9 10 11 12 13 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.