Discover machine learning with python cookbook pdf, include the articles, news, trends, analysis and practical advice about machine learning with python cookbook pdf on alibabacloud.com
such as the followingHere is an example of a Python implementation:#-*-coding:cp936-*-"Created on Nov, 2010Adaboost was short for Adaptive Boosting@author:peter" from NumPy Import *def loadsimpdata (): Datmat = Matrix ([[[1., 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) Classlabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datmat,classlabelsdef loaddataset (fileName): #general function to Parse tab-delimited Floats numfeat = Len (open (File
Keras is a python library for deep learning that contains efficient numerical libraries Theano and TensorFlow.
The purpose of this article is to learn how to load data from CSV and make it available for keras use, how to model the data of multi-class classification using neural network, and how to use Scikit-learn to evaluate Keras neural network models.Preface, the concept description of two classificatio
=true) # drop useless columns and create LABELSIDX = test.id.values.astype (int) test = Test.drop ([' id ', ' tube_assembly_id ', ' quote_date '), Axis = 1) labels = Train.cost.valuestrain = Train.drop ([' Quote_date ' , ' cost ', ' tube_assembly_id '], Axis = 1) # Convert data to NumPy Arraytrain = Np.array (train) test = Np.array (test)From:kaggle Copyright NOTICE: This article for Bo Master original article, without Bo Master permission not reproduced. Ma
Efficiency comparison:It's a cliché, but this time with a new module,Run Time Test Module Timeti:1 ImportTimeit2 3normal = Timeit.timeit ('sum (x*x for x in range )', number=10000)4NATIVE_NP = Timeit.timeit ('sum (na*na)',#Repeating part5setup="import numpy as np; na = Np.arange (+)",#Setup runs only once6number=10000)#Number of repetitions7GOOD_NP = Timeit.timeit ('Na.dot (NA)',8setup="import numpy as np; na = Np.arange (+)",9number=10000)Ten One Print('Native Run time:', Normal,'\ n', A
90avg/total 0.82 0.78 0.79 329The accuracy of gradient tree boosting is 0.790273556231 Precision recall f1-score support 0 0.92 0.78 0.84 239 1 0.58 0.82 0.68 90avg/total 0.83 0.79 0.80 329Conclusion:Predictive performance: The gradient rise decision tree is larger than the random forest classifier larger than the single decision tree. The industry often uses the stochastic forest c
#数据预处理方法, mainly dealing with the dimension of data and the problem of the same trend.Import NumPy as NPFrom Sklearn Import preprocessing#零均值规范Data=np.random.rand (3,4) #随机生成3行4列的数据Data_standardized=preprocessing.scale (data) #对数据进行归一化处理, that is, each value minus the mean divided by the variance is primarily used for SVM#线性数据变换最大最小化处理Data_scaler=preprocessing. Minmaxscaler (feature_range= (0,1)) #选定区间 (0,1), raw Data-min/(max-min)Data_scaled=data_scaler.fit (data)#数据标准化处理normalizeddata_normaliz
clustering are generally relatively random, generally not very ideal, and the final result tends to be indistinguishable from natural clusters, in order to avoid this problem, the binary K mean clustering algorithm is used in this paper .The implementation of the binary K-means clustering Python is given in the next blog post.Complete code and test data can be obtained here, or you want to get the source from the connection, because the copy code fro
Common Python machine learning packagesNumpy: A package for scientific computingPandas: Provides high-performance, easy-to-use data structures and data analysis toolsSCIPY: Software for math, science and engineeringStatsmodels: Used to explore data, estimate statistical models, statistical testsScikit-learn: Provides classic
1.Pipenv
Pipenv is a Kenneth Reitz amateur project designed to integrate other software packages, such as NPM and yarn, into Python. It does not need to install virtualenv, Virtualenvwrapper, do not manage requirements.txt files, and does not have to ensure the reproducibility of dependent versions. With pipenv, you can specify the dependencies in the Pipfile. The tool generates a Pipfile.lock file that makes your build more deterministic and avoids b
K-means Clustering algorithm
Test:
#-*-coding:utf-8-*-"""Created on Thu 10:59:20 2017@author:administrator"""" "There are eight major variable data on the average annual consumer spending of urban households in 31 provinces in 1999, with eight variables: food, clothing, household equipment supplies and services, health care, transportation and communications, cultural services for recreational education, residential and miscellaneous goods and services. The 31 provinces are c
Boring, adapt to the trend, learn the Python machine learning it.Buy a book, first analyze the catalogue it.1. The first chapter is the Python machine learning ecosystem.1.1. Data science or m
1. Background
In the future, the blogger will update the machine learning algorithm and its Python simple implementation regularly every week. Today's algorithm is the KNN nearest neighbor algorithm. KNN algorithm is a kind of supervised learning classifier class algorithm.
What is supervised
Here is still to recommend my own built Python development Learning Group: 483546416, the group is the development of Python, if you are learning Python, small series welcome you to join, everyone is the software Development Party, not regularly share dry goods (only
you separate a room with a wall, you're trying to create two different populations in the same room. Similarly, decision trees are dividing the population into different groups as much as possible.
For more information, see: Simplification of decision tree algorithms
Python code
7, K mean value algorithm
k– mean algorithm is a kind of unsupervised learning algorithm, it can solve the problem of clustering.
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.