). In fact, the calculation of numerical methods can not take advantage of the previous useful information, each derivative needs to be calculated independently, the calculation can not be simplified.But the interesting thing is that the numerical derivative is useful in another place--gradient check! We can use the results of the central differences and the derivative of the BP algorithm to compare, in order to determine whether the BP algorithm execution is correct.Starting today to learn the
I. Working methods of machine learning
① Select data: Divide your data into three groups: training data, validating data, and testing data
② model data: Using training data to build models using related features
③ validation Model: Using your validation data to access your model
④ Test Model: Use your test data to check the performance of the validated model
⑤ Use model: Use fully trained models to mak
some time ago on the Internet to see the Coursera Open Classroom Big Machine learning Cornerstone Course, more comprehensive and clear machine learning needs of the basic knowledge, theoretical basis to explain. There are several more important concepts and ideas in foundation, first review, and then open the follow-up
to the right in this image. We can generally see the two learning curves, the two curves of blue and red are approaching each other. Therefore, if we extend the curve to the right, it seems that the training set error is likely to increase gradually. The cross-validation set error will continue to decline. Of course, we are most concerned with cross-validation set errors or test set errors. So from this picture, we can basically predict that if we co
:
, where θ is the vector of (n+1) x1, x is the vector of (n+1) x1, ∙.
We all use vectors to represent the hyper-plane behind.
Except that θ is called a weight, and b is biased, so the complete expression of the super plane is:θ*x+b=0
The Perceptron model can be defined as y=sign (θ∙x+b) where:
If we call sign the activation function, the difference between the perceptual machine and the logistic regression is that the sign,logistic regression acti
Octave Machine Learning Common commands
A, Basic operations and moving data around
1. Attach the next line of output with SHIFT + RETURN in command line mode
2. The length command returns a higher one-dimensional dimension when apply to the matrix
3. Help + command is a brief aid for displaying commands
4. doc + command is a detailed help document for displaying commands
5. Who command displays all current
This paper is organized from the "machine learning combat" and Http://write.blog.csdn.net/posteditBasic Principles of Mathematics:
Very simply, the Bayes formula:
Base of thought:
For an object to be sorted x, the probability that the thing belongs to each category Y1,y2, which is the most probability, think that the thing belongs to which category.Algorithm process:
1. Suppose something to be sorted x, it
Brief introduction:Support Vector Machine (SVM) is a supervised learning model of two classification, and his basic model is a linear model that defines the largest interval in the feature space. The difference between him and the Perceptron is that the perceptron simply finds the hyper-plane that can divide the data correctly, and SVM needs to find the most spaced hyper-plane to divide the data. So the per
July online April machine learning algorithm class notes--no.1
Objective
Machine learning is a multidisciplinary interdisciplinary, including probability theory, statistics, convex analysis, feature engineering and so on. Recently followed the July algorithm to learn the knowledge of
A probe into machine learning1. What is machine learningLearning refers to the skill that a person refines in the course of observing things, rather than learning, machine learning refers to the ability of a computer to gain some experience (i.e. a mathematical model) in a p
[Machine learning algorithm-python implementation] matrix denoising and normalization, python Machine Learning1. The background project is required. We plan to use python to implement matrix denoising and normalization. The numpy mathematical library does not find ideal functions. Therefore, I wrote a de-noise and normalization algorithm in the standard library,
Core ML machine learning, coreml Machine Learning
At the WWDC 2017 Developer Conference, Apple announced a series of new machine learning APIs for developers, including visual APIs for facial recognition and natural language proce
Microsoft Azure cloud service introduces the machine learning module. Users only need to upload data and use some algorithm interfaces and R or other language interfaces provided by the machine learning module, you can use Microsoft Azure's powerful cloud computing capabilities to implement your
The topic of machine learning techniques under this column (machine learning) is a personal learning experience and notes on the Machine Learning Techniques (2015) of Coursera public co
The essential difference between classification and clustering in machine learning
There are two kinds of big problems in machine learning, one is classification, the other is clustering.In our life, we often do not have too much to distinguish between these two concepts, think clustering is classification, classificat
Python machine learning Chinese version, python machine Chinese Version
Introduction to Python Machine Learning
Chapter 1 Let computers learn from data
Convert data into knowledge
Three types of machine
1. Scikit-learn IntroductionScikit-learn is an open-source machine learning module for Python, built on numpy,scipy and matplotlib modules. It is worth mentioning that Scikit-learn was first launched by David Cournapeau in 2007, a Google Summer of code project, since then the project has been a lot of contributors, And the project has been maintained by a team of volunteers so far.Scikit-learn's biggest fea
Machine learning DefinitionMachine learning is a branch of AI that aims to give machines a new ability. (specialized in how computers simulate or implement human learning behaviors in order to acquire new knowledge or skills and reorganize existing knowledge structures to continually improve their performance.)
Types of learning according to my personal understanding, the classification of learning methods in machine learning helps us face a specific problem, you can select an appropriate machine learning algorithm based on your goals. F
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.