neural network book

Read about neural network book, The latest news, videos, and discussion topics about neural network book from alibabacloud.com

Understanding the function of cross entropy as loss function in neural network

The role of cross-entropy One of the most common ways to solve multi-classification problems with neural networks is to set N output nodes at the last layer, whether in shallow neural networks or in CNN, for example, the last output layer in alexnet has 1000 nodes:And even if the ResNet cancels the all-connected layer, it will have a 1000-node output layer at the end: In general, the number of nodes in the

A detailed explanation of BP neural network derivation process

BP algorithm is one of the most effective multi-layer neural network learning methods, its main characteristic is the signal forward transmission, and the error after the propagation, through the constant adjustment of the network weight value, so that the final output of the network and the desired output as close as

TensorFlow Example: (Convolution neural network) LENET-5 model

There are infinitely many neural networks which can be obtained by any combination of the convolution layer, the pool layer and so on, and what kind of neural network is more likely to solve the real image processing problem. In this paper, a general model of convolution neural net

Neural Network-making prime number Reader

It took a week to learn about neural networks after soy sauce in the Knowledge Engineering Center. The teacher arranged a question and asked me to try it. I did a little simple. I conducted several groups of tests and wrote a summary report. I posted it here. After more than a week of experimentation, I have a simple understanding of this issue. The following is my thoughts on this issue. In the last two days, I suddenly felt that the problem was much

C ++ Implementation of BP artificial neural network

BP (Back Propagation) network is a multi-layer feed-forward Network trained by the error inverse propagation algorithm, which was proposed by a team of scientists led by Rumelhart and mccelland in 1986, it is one of the most widely used neural networks. The BP network can learn and store a large number of input/output

Realization of BP neural network __c++ from zero in C + +

This paper is reproduced from http://blog.csdn.net/ironyoung/article/details/49455343 BP (backward propogation) neural networkSimple to understand, neural network is a high-end fitting technology. There are a lot of tutorials, but in fact, I think it is enough to look at Stanford's relevant learning materials, and there are better translations at home: Introdu

The latest development of speech recognition framework--deep full sequence convolutional neural network debut

Dry Goods | The latest development of speech recognition framework--deep full sequence convolution neural network debut2016-08-05 17:03 reprinted Chenyangyingjie 1 reviewsIntroduction: At present the best speech recognition system uses two-way long-term memory network (LSTM,LONGSHORT), but the system has high training complexity, decoding Singo problems, especial

GRNN Generalized regression Neural network

Generalized regression neural network GRNN (General Regression neural Network) Generalized regression Neural network is an improvement based on radial basis function neural

Neural network and deep learning series article 15: Reverse propagation algorithm

Source: Michael Nielsen's "Neural Network and Deep learning", click the end of "read the original" To view the original English.This section translator: Hit Scir undergraduate Wang YuxuanDisclaimer: If you want to reprint please contact [email protected], without authorization not reproduced. Using neural networks to recognize handwritten numbers

Proficient in the new syntax of MATLAB neural network example 10-16

"Proficient in MATLAB neural network" in the book example 10-16, when creating a BP network, the original wording is:  NET = NEWFF (Minmax (alphabet), [S1 s2],{' Logsig ' Logsig '}, ' Traingdx ');Because there are hints in the process of operation, naturally want to change to a new way of writing (refer to the previous

Recurrent Neural Network Language Modeling Toolkit source (eight)

Series PrefaceReference documents: Rnnlm-recurrent Neural Network Language Modeling Toolkit (click here to read) Recurrent neural network based language model (click here to read) EXTENSIONS of recurrent neural NETWORK LAN

Recurrent neural network language modeling toolkit source code (8), recurrentneural

Recurrent neural network language modeling toolkit source code (8), recurrentneuralReferences: RNNLM-Recurrent Neural Network Language Modeling Toolkit (Click here to read) Recurrent neural network based language model (read he

Decision-making forest and convolutional neural network er

, database storage of things more, a lot of things are known to know do not know what. Second, the database index is fast and complete, according to a thing can quickly associate with the principle of its occurrence. Third, the sensory ability is strong, palpation all sharp. That's what makes Sherlock Holmes.Because I know so much, so when I see a paper that blends decision-making forests with convolutional neural networks, I feelsomething is more clo

Machine learning Five: neural network, reverse propagation algorithm

the idea of neural networks.Ii. Neural network 1, structureThe structure of the neural network, as shown inAbove is a simplest model, divided into three layers: input layer, hidden layer, output layer.The hidden layer can be a multilayer structure, and by extending the stru

Deep Learning Neural Network pure C language basic Edition

Deep Learning Neural Network pure C language basic Edition Today, Deep Learning has become a field of fire, and the performance of Deep Learning Neural Networks (DNN) in the field of computer vision is remarkable. Of course, convolutional neural networks are used in engineering to reduce computational workload rather t

A study record of CNN convolutional Neural Network

1. OverviewConvolution neural network features: On the one hand, the connection between the neurons is non-fully connected, on the other hand, the weights of the connections between some neurons in the same layer are shared (i.e. the same).Left: The image has 1000*1000 pixels, there are 10^6 of hidden layer neurons, to be fully connected, there are 1000*1000*100000=10^12 weight parametersRight: There are al

Convolution Neural Network (lecun)

The CNN of lecun has aroused my great interest. From today on, I will read the papers of lecun and publish the practical results here. 20100419 After reading the generalization and network design strategies thesis, I figured out the derivation of the network structure and BP rules described in section 5. I need to read other books. The Chinese version of "Neural

Detailed BP neural network prediction algorithm and implementation process example

Building4.4.2.1 BP network modelBP networks (Back-propagation network), also known as the reverse propagation neural network, through the training of sample data, constantly revise the network weights and thresholds to make the error function down in the negative gradient d

Python uses numpy to flexibly define the neural network structure.

Python uses numpy to flexibly define the neural network structure. This document describes how to flexibly define the neural network structure of Python Based on numpy. We will share this with you for your reference. The details are as follows: With numpy, You can flexibly define the

Recurrent Neural Network Language Modeling Toolkit Source analysis (three)

Series PrefaceReference documents: Rnnlm-recurrent Neural Network Language Modeling Toolkit (click here to read) Recurrent neural network based language model (click here to read) EXTENSIONS of recurrent neural NETWORK LAN

Total Pages: 15 1 .... 11 12 13 14 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.