neural network book

Read about neural network book, The latest news, videos, and discussion topics about neural network book from alibabacloud.com

(reproduced) convolutional Neural Networks convolutional neural network

convolutional Neural Networks convolutional neural network contents One: Leading back propagation reverse propagation algorithm Network structure Learning Algorithms Two: convolutional neural networks convolutional n

Implementation of three kinds of cyclic neural network (RNN) algorithm (from scratch, Theano, Keras) _ Neural network

Preface body RNN from Scratch RNN using Theano RNN using Keras PostScript "From simplicity to complexity, and then to Jane." "Foreword Skip the nonsense and look directly at the text After a period of study, I have a preliminary understanding of the basic principles of RNN and implementation methods, here are listed in three different RNN implementation methods for reference. RNN principle in the Internet can find a lot, I do not say here, say it will not be better than those, here first recomm

Deep learning--the artificial neural network and the upsurge of research

introduces the latter.1958 Rosenblatt presented the Perceptron (Perceptron), which is essentially a linear classifier, 1969 Minsky and Papert wrote a book "Perceptrons", which they pointed out in the book: ① Single-layer perceptron can not achieve XOR function, ② computer ability is limited, can not deal with the long-running process of neural

What is a neural network (depth learning Chapter one)? __ Neural Network

Neural Network Lecture VideoWhat are the neuronts?Storing numbers, returning function values for functionsHow are they connected?a1+ a2+ a3+ A4 +......+ An represents the activation value of the first levelΩ1ω2 ..... Ω7ω8 represents the weight valueCalculates the weighted sum, marks the positive weight value as green, the negative weight value is marked red, the darker the color, the closer the representati

Self-organizing neural network model and learning algorithm __ Neural network

Self-organizing neural network, also known as self-organizing competitive neural network, is especially suitable for solving the problem of pattern classification and recognition. The network model belongs to the Feedforward neural

Deepeyes: Progressive visual analysis system for depth-neural network design (deepeyes:progressive Visual analytics for designing deep neural Networks)

Deep neural Network, the problem of pattern recognition, has achieved very good results. But it is a time-consuming process to design a well-performing neural network that requires repeated attempts. This work [1] implements a visual analysis system for deep neural

From neural network to BP algorithm (pure theory derivation) __ Neural network

The author says: Before having studied once, but after a period of time, many details place already blurred. Recently deduced again, in order to retain as far as possible the derivation idea, specially writes this blog post. On the one hand for their future memories, on the other hand to communicate with you to learn.For this blog post, the following description:1. This blog does not guarantee that the derivation process is completely correct, if there is a problem, please correct me.2. If neces

"Turn" cyclic neural network (RNN, recurrent neural Networks) study notes: Basic theory

Transfer from http://blog.csdn.net/xingzhedai/article/details/53144126More information: http://blog.csdn.net/mafeiyu80/article/details/51446558http://blog.csdn.net/caimouse/article/details/70225998http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/RNN (recurrent Neuron) is a neural network for modeling sequence data. Following the bengio of the probabilistic language model based on

Neural network detailed detailed neural networks

BP algorithm of neural network, gradient test, random initialization of Parameters neural Network (backpropagation algorithm,gradient checking,random initialization)one, cost functionfor a training set, the cost function is defined as:where the red box is circled by a regular term, K: the number of output units is the

[Mechine Learning & Algorithm] Neural network basics

Perceptron with detailed mathematics, and in particular, the perceptual device cannot solve the simple classification tasks such as XOR (XOR). Minsky that if the computational layer is added to two layers, the computational amount is too large and there is no effective learning algorithm. So, he argues, there is no value in studying deeper networks. due to the great influence of Minsky and the pessimistic attitude in the book, many scholars and labor

Neural network model for machine learning-under (neural networks:representation)

potentials, are actually some faint currents. So if a neuron wants to deliver a message, it sends a faint current to other neurons through its axis bursts.2 , the yellow circle represents a neuron, X is the input vector, and θ represents the weight of the neuron (which is actually the model parameter we described earlier), and hθ (X) represents the excitation function (in neural network terminology, the ex

convolutional Neural Networks (convolutional neural Network)

Just entered the lab and was called to see CNN. Read some of the predecessors of the blog and paper, learned a lot of things, but I think some blog there are some errors, I try to correct here, but also added their own thinking and deduction. After all, the theory of CNN has been put forward, I just want to be able to objectively describe it. If you feel that there is something wrong with this article, be sure to tell me in the comments below.convolutional n

convolutional Neural Network (convolutional neural Networks)

convolutional neural Network (CNN) is the foundation of deep learning. The traditional fully-connected neural network (fully connected networks) takes numerical values as input.If you want to work with image-related information, you should also extract the features from the image and sample them. CNN combines features,

Deep learning Note (i) convolutional neural network (convolutional neural Networks)

I. Convolutionconvolutional Neural Networks (convolutional neural Networks) are neural networks that share parameters spatially. Multiply by using a number of layers of convolution, rather than a matrix of layers. In the process of image processing, each picture can be regarded as a "pancake", which includes the height of the picture, width and depth (that is, co

Application fields of neural networks and recommendation of Neural Network Software

Neural NetworkIt is a system that can adapt to the new environment. It has the ability to analyze, predict, reason, and classify the past experience (information, it is a system that can emulate the human brain to solve complex problems. Compared with conventional systems (using statistical methods, pattern recognition, classification, linear or nonlinear methods, A Neural

Figure Neural Networks the graph neural network model

1 Figure Neural Network (original version)Figure Neural Network now the power and the use of the more slowly I have seen from the most original and now slowly the latest paper constantly write my views and insights I was born in mathematics, so I prefer the mathematical deduction of the first article on the introductio

TensorFlow realization of convolution neural network (Advanced) _ Neural network

If you use 100k batch in this model, and combine the decay of learning rate (that is, the rate of learning is reduced by a ratio every once in a while), the correct rate can be as high as 86%. There are about 1 million parameters to be trained in the model, and the total amount of arithmetic to be estimated is about 20 million times. So this convolution neural network model, using some techniques.(1) Regula

Stanford University public Class machine learning: Neural Networks learning-autonomous Driving example (automatic driving example via neural network)

The use of neural networks to achieve autonomous driving, which means that the car through learning to drive themselves.It is a legend explaining how to realize automatic driving through neural network learning:The lower left corner is an image of the road ahead that the car sees. Left, you can see a horizontal menu bar (the direction indicated by the number 4),

Neural network Learning (ii) Universal Approximator: Feedforward Neural Networks

1. OverviewWe have already introduced the earliest neural network: Perceptron. A very deadly disadvantage of the perceptron is that its linear structure, which can only make linear predictions (even if it does not solve the regression problem), is a point that was widely criticized at the time.Although the perceptual machine can not solve the nonlinear problem, it provides a way to solve the nonlinear probl

Neural network Turing (neural Turing machines, NTM)

Recently, the Google deep Mind team put forward a machine learning model, and a particularly tall on the name: Neural network Turing machine, I translated this article for everyone, translation is not particularly good, some sentences did not read clearly, welcome everyone to criticize Original paper Source: Http://arxiv.org/pdf/1410.5401v1.pdf.All rights reserved, prohibited reprint.

Total Pages: 15 1 .... 4 5 6 7 8 .... 15 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.