Preface body RNN from Scratch RNN using Theano RNN using Keras PostScript
"From simplicity to complexity, and then to Jane." "Foreword
Skip the nonsense and look directly at the text
After a period of study, I have a preliminary understanding of the basic principles of RNN and implementation methods, here are listed in three different RNN implementation methods for reference.
RNN principle in the Internet can find a lot, I do not say here, say it will not be better than those, here first recomm
introduces the latter.1958 Rosenblatt presented the Perceptron (Perceptron), which is essentially a linear classifier, 1969 Minsky and Papert wrote a book "Perceptrons", which they pointed out in the book: ① Single-layer perceptron can not achieve XOR function, ② computer ability is limited, can not deal with the long-running process of neural
Neural Network Lecture VideoWhat are the neuronts?Storing numbers, returning function values for functionsHow are they connected?a1+ a2+ a3+ A4 +......+ An represents the activation value of the first levelΩ1ω2 ..... Ω7ω8 represents the weight valueCalculates the weighted sum, marks the positive weight value as green, the negative weight value is marked red, the darker the color, the closer the representati
Self-organizing neural network, also known as self-organizing competitive neural network, is especially suitable for solving the problem of pattern classification and recognition. The network model belongs to the Feedforward neural
Deep neural Network, the problem of pattern recognition, has achieved very good results. But it is a time-consuming process to design a well-performing neural network that requires repeated attempts. This work [1] implements a visual analysis system for deep neural
The author says: Before having studied once, but after a period of time, many details place already blurred. Recently deduced again, in order to retain as far as possible the derivation idea, specially writes this blog post. On the one hand for their future memories, on the other hand to communicate with you to learn.For this blog post, the following description:1. This blog does not guarantee that the derivation process is completely correct, if there is a problem, please correct me.2. If neces
Transfer from http://blog.csdn.net/xingzhedai/article/details/53144126More information: http://blog.csdn.net/mafeiyu80/article/details/51446558http://blog.csdn.net/caimouse/article/details/70225998http://kubicode.me/2017/05/15/Deep%20Learning/Understanding-about-RNN/RNN (recurrent Neuron) is a neural network for modeling sequence data. Following the bengio of the probabilistic language model based on
BP algorithm of neural network, gradient test, random initialization of Parameters neural Network (backpropagation algorithm,gradient checking,random initialization)one, cost functionfor a training set, the cost function is defined as:where the red box is circled by a regular term, K: the number of output units is the
Perceptron with detailed mathematics, and in particular, the perceptual device cannot solve the simple classification tasks such as XOR (XOR). Minsky that if the computational layer is added to two layers, the computational amount is too large and there is no effective learning algorithm. So, he argues, there is no value in studying deeper networks. due to the great influence of Minsky and the pessimistic attitude in the book, many scholars and labor
potentials, are actually some faint currents. So if a neuron wants to deliver a message, it sends a faint current to other neurons through its axis bursts.2 , the yellow circle represents a neuron, X is the input vector, and θ represents the weight of the neuron (which is actually the model parameter we described earlier), and hθ (X) represents the excitation function (in neural network terminology, the ex
Just entered the lab and was called to see CNN. Read some of the predecessors of the blog and paper, learned a lot of things, but I think some blog there are some errors, I try to correct here, but also added their own thinking and deduction. After all, the theory of CNN has been put forward, I just want to be able to objectively describe it. If you feel that there is something wrong with this article, be sure to tell me in the comments below.convolutional n
convolutional neural Network (CNN) is the foundation of deep learning. The traditional fully-connected neural network (fully connected networks) takes numerical values as input.If you want to work with image-related information, you should also extract the features from the image and sample them. CNN combines features,
I. Convolutionconvolutional Neural Networks (convolutional neural Networks) are neural networks that share parameters spatially. Multiply by using a number of layers of convolution, rather than a matrix of layers. In the process of image processing, each picture can be regarded as a "pancake", which includes the height of the picture, width and depth (that is, co
Neural NetworkIt is a system that can adapt to the new environment. It has the ability to analyze, predict, reason, and classify the past experience (information, it is a system that can emulate the human brain to solve complex problems. Compared with conventional systems (using statistical methods, pattern recognition, classification, linear or nonlinear methods, A Neural
1 Figure Neural Network (original version)Figure Neural Network now the power and the use of the more slowly I have seen from the most original and now slowly the latest paper constantly write my views and insights I was born in mathematics, so I prefer the mathematical deduction of the first article on the introductio
If you use 100k batch in this model, and combine the decay of learning rate (that is, the rate of learning is reduced by a ratio every once in a while), the correct rate can be as high as 86%. There are about 1 million parameters to be trained in the model, and the total amount of arithmetic to be estimated is about 20 million times. So this convolution neural network model, using some techniques.(1) Regula
The use of neural networks to achieve autonomous driving, which means that the car through learning to drive themselves.It is a legend explaining how to realize automatic driving through neural network learning:The lower left corner is an image of the road ahead that the car sees. Left, you can see a horizontal menu bar (the direction indicated by the number 4),
1. OverviewWe have already introduced the earliest neural network: Perceptron. A very deadly disadvantage of the perceptron is that its linear structure, which can only make linear predictions (even if it does not solve the regression problem), is a point that was widely criticized at the time.Although the perceptual machine can not solve the nonlinear problem, it provides a way to solve the nonlinear probl
Recently, the Google deep Mind team put forward a machine learning model, and a particularly tall on the name: Neural network Turing machine, I translated this article for everyone, translation is not particularly good, some sentences did not read clearly, welcome everyone to criticize
Original paper Source: Http://arxiv.org/pdf/1410.5401v1.pdf.All rights reserved, prohibited reprint.
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.