Read about neural network for handwriting recognition, The latest news, videos, and discussion topics about neural network for handwriting recognition from alibabacloud.com
Building4.4.2.1 BP network modelBP networks (Back-propagation network), also known as the reverse propagation neural network, through the training of sample data, constantly revise the network weights and thresholds to make the error function down in the negative gradient d
After figuring out the fundamentals of convolutional Neural Networks (CNN), in this post we will discuss the algorithm implementation techniques based on Theano. We will also use mnist handwritten numeral recognition as an example to create a convolutional neural network (CNN) to train the
, upload to the second cabinet, the machine identified some characteristics of the dog, very vague, continue to upload to the third cabinet, the other part of the dog features identified, the image is gradually clear up, so continue, like "winding" (convolution) action, has been "winding" to the tenth cabinet, the dog's face revealed the "truth", recognition task completed. Ah, it turns out to be the most popular image and speech
In front of us, we talked about the DNN, and the special case of DNN. CNN's model and forward backward propagation algorithms are forward feedback, and the output of the model has no correlation with the model itself. Today we discuss another type of neural network with feedback between output and model: Cyclic neural network
Classification
BPN (Back Propagation net)
Here I will introduce the Back-Propagation Network BPN-the back-propagation error of the drive item. A back propagation neural network is a multi-layer network that trains weights for non-linear differential functions, and is a type of forward
require a lot of data and strong hardware computing power. Previously limited by data volume and computing power, has been tepid. In recent years the Internet has flourished, all kinds of information have been realized data, the amount of data is greatly increased, you think of your online shopping when you stay on the Internet information you know. In addition, the computer hardware in accordance with the "Moore's Law" development, the exponential growth of computing power, which provides a go
How CNN applies to NLP
What is convolution and what is convolution neural network is not spoken, Google. Starting with the application of natural language processing (so, how does any of this apply to NLP?).Unlike image pixels, a matrix is used in natural language processing to represent a sentence or a passage as input, and each row of the matrix represents a token, either a word or a character. So each ro
ICML 2016 's article [Noisy Activation Functions] gives the definition of an activation function: The activation function is a map h:r→r and is almost everywhere.The main function of the activation function in neural network is to provide the nonlinear modeling ability of the network, if not specifically, the activation function is generally nonlinear function. A
focus on the accuracy of the neural network output PC, y1 is the PC Feature Point DetectionThe neural network can realize the recognition of the target feature by outputting the feature point (x, y) coordinates on the image.To build such a
Foundation of Neural Network
(Early Warning: This section begins with mathematical notation and the necessary calculus, linear algebra Operations) Overview of this section
As mentioned in the previous lecture, "Learning" is about getting the computer to automatically implement a complex function that completes the mapping from input x to output Y. The basic framework of machine learning is shown in the fol
1.computer Vision
CV is an important direction of deep learning, CV generally includes: image recognition, target detection, neural style conversion
Traditional neural network problems exist: the image of the input dimension is larger, as shown, this causes the weight of the W dimension is larger, then he occupies a l
AlexNet:
(ILSVRC Top 5 test error rate of 15.4%)
the first successful display of the convolutional neural network potential network structure.
key point: with a large amount of data and long-time training to get the final model, the results are very significant (get 2012 classification first) using two GPU, divided into two groups for convolution. Since Alex
REF: Convolution neural network CNNs from LeNet-5The qac of some of the posts in this article:1. FundamentalsMLP (Multilayer Perceptron, multilayer perceptron) is a forward neural network (as shown), and is fully connected between adjacent two-layer networks.Sigmoid typically use the Tanh function and the logistic func
information transfer rates (network throughput)
Low-cost, small-scale construction of a particular structure network
How to add a priori information to a neural network:
There is no effective rule to achieve
A special process can be implemented:
Restricting th
CNN (convolutional neural Network)Convolutional Neural Networks (CNN) dating back to the the 1960s, Hubel and others through the study of the cat's visual cortex cells show that the brain's access to information from the outside world is stimulated by a multi-layered receptive Field. On the basis of feeling wild, 1980 Fukushima proposed a theoretical model Neocog
http://mp.weixin.qq.com/s?__biz=MjM5ODkzMzMwMQ==mid=2650408190idx=1sn= f22adfb13fb14f8a220222355659913f1. How to understand the status of NLP: see some tips for the latest doctoral dissertationIt may be a shortcut to look at the current status of an area and see the latest doctoral dissertation. For example, there are children's shoes asked how to understand the State-of-the-art of NLP, in fact, Stanford, Berkeley, CMU, JHU and other schools recently selected doctoral theses, the field of mainst
Network Steps to do: (a Chinese, teach Chinese, why write a bunch of English?) )1, sample Abatch of data (sampling)2,it through the graph, get loss (forward propagation, get loss value)3,backprop to calculate the geadiets (reverse propagation calculation gradient)4,update the paramenters using the gradient (using gradient update parameters)What convolutional neural networks can do:Category Fetch (recommende
1. Reading
The Recurrent neural Network (NN) is the most commonly used neural network structure in NLP (Natural language Processing), and the convolution neural network is similar in the field of image
32 bit of precision, by sacrificing precision to reduce the amount of space required for each weight.
The more extreme approach to this quantization is the fourth kind of technology called the two-way neural network. The so-called two-system neural network, is that all the weights do not have to express the floating-p
Weilin huang--"TIP2015" text-attentional convolutional neural Network for Scene Text Detection)Directory
Author and RELATED LINKS
Method Summary
Innovation points and contributions
Method details
Experimental results
Question Discussion
Author and RELATED LINKS
Summary and Harvest Point
Author Supplemental Information
Reference documents
Author and
The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion;
products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the
content of the page makes you feel confusing, please write us an email, we will handle the problem
within 5 days after receiving your email.
If you find any instances of plagiarism from the community, please send an email to:
info-contact@alibabacloud.com
and provide relevant evidence. A staff member will contact you within 5 working days.