pandas example dataframe

Alibabacloud.com offers a wide variety of articles about pandas example dataframe, easily find your pandas example dataframe information here online.

How Python Deletes a pandas dataframe column

Delete one or more columns of Pandas Dataframe:method One : Direct del df[' Column-name ']method Two : Using the Drop method, there are three types of equivalent expressions:1. df= df.drop (' column_name ', 1);2. Df.drop (' column_name ', Axis=1, Inplace=true)3. Df.drop ([df.columns[[0,1, 3]], axis=1,inplace=true) # Note:zero indexedNote : Usually there is a inplace optional parameter that modifies the original array and returns a new array. If set to

Sorting of Pandas Library Dataframe

DF1 is the test data for the DATAFRAME structure:The DF1 data is read from the TEST.XLSX document, using the sample code as follows:#-*-Coding:utf-8-*-import Tushare as Tsimport pandas as Pddf = Pd.read_excel (' test.xlsx ') df1 = Df.head (Ten) #dataframe按索引In ascending order, the default is ascending #print df1.sort_index () #

Pandas Learning: Sorting series and Dataframe __pandas

This question mainly writes the method of sorting series and dataframe according to index or value Code: #coding =utf-8 Import pandas as PD import numpy as NP #以下实现排序功能. SERIES=PD. Series ([3,4,1,6],index=[' B ', ' A ', ' d ', ' C ']) FRAME=PD. Dataframe ([[2,4,1,5],[3,1,4,5],[5,1,4,2]],columns=[' B ', ' A ', ' d ', ' C '],index=[' one ', ' two ', ' three ']) pr

Writes pandas's dataframe data to the MySQL database + sqlalchemy

Tags: Establish connection copy TOC UTF8 identify Data-nec LDB serviceWrites pandas's dataframe data to the MySQL database + sqlalchemy [Python]View PlainCopyprint? IMPORTNBSP;PANDASNBSP;ASNBSP;PDNBSP;NBSP; fromsqlalchemyimportcreate_engine NBSP;NBSP; # #将数据写入mysql的数据库, However, you need to establish a connection through Sqlalchemy.create_engine, and the character encoding is set to UTF8, otherwise some Latin character

Use lxml XPath to read a table in a Web page and convert it to a pandas dataframe

convert to a format that can be found using XPath = Doc.xpath ('//table ') find all the tables in the document and return a list Let's look at the source code of the Web page and find the form that needs to be retrieved The first behavior title of the table, the following behavior data, we define a function to get them separately: def _unpack (Row, kind= ' TD '): ELTs = Row.xpath ('.//%s '%kind) # Get data based on label type return [Val.text_content () For Val in ELTs] # Use

[Spark] [Python] [DataFrame] [Rdd] Example of getting an RDD from Dataframe

[Spark] [Python] [DataFrame] [Rdd] Example of getting an RDD from Dataframe$ HDFs Dfs-cat People.json{"Name": "Alice", "Pcode": "94304"}{"Name": "Brayden", "age": +, "Pcode": "94304"}{"Name": "Carla", "age": +, "Pcoe": "10036"}{"Name": "Diana", "Age": 46}{"Name": "Etienne", "Pcode": "94104"}$pysparkSqlContext = Hivecontext (SC)PEOPLEDF = SqlContext.read.json ("Pe

[Spark] [Python] [RDD] [DataFrame] from the RDD construction DataFrame Example

[Spark] [Python] [RDD] [DataFrame] from the RDD construction DataFrame ExampleFrom pyspark.sql.types Import *schema = Structtype ([Structfield ("Age", Integertype (), True),Structfield ("Name", StringType (), True),Structfield ("Pcode", StringType (), True)])Myrdd = Sc.parallelize ([(+, "Abram", "01601"), (+, "Lucia", "87501")])MYDF = Sqlcontext.createdataframe (Myrdd,schema)Mydf.limit (5). Show ()+---+----

Pandas Data Processing Example display: Global listing of listed companies

There is now a list of the top 2000 global listed companies in Forbes 2016, but the original data is not standardized and needs to be processed before it can be used further. In this paper, we introduce the data pandas by using the example operation. As usual, let me start by saying my operating environment, as follows: Windows 7, 64-bit Python 3.5 Pandas

[Spark] [Python]spark example of obtaining Dataframe from Avro file

[Spark] [Python]spark example of obtaining Dataframe from Avro fileGet the file from the following address:Https://github.com/databricks/spark-avro/raw/master/src/test/resources/episodes.avroImport into the HDFS system:HDFs Dfs-put Episodes.avroRead in:Mydata001=sqlcontext.read.format ("Com.databricks.spark.avro"). Load ("Episodes.avro")Interactive Run Results:In [7]: Mydata001=sqlcontext.read.format ("Com.

[Spark] [Python] DataFrame Select Operation Example

[Example of a limited record taken in Spark][python]dataframethe continuationIn [4]: Peopledf.select ("Age")OUT[4]: Dataframe[age:bigint]In [5]: Mydf=people.select ("Age")---------------------------------------------------------------------------Nameerror Traceback (most recent)----> 1 Mydf=people.select ("Age")Nameerror:name ' People ' is not definedIn [6]: Mydf=peopledf.select ("Age")In [7]: Mydf.take (3)

[Spark] [Python] Example of opening a JSON file in Dataframe mode

[Spark] [Python] An example of opening a JSON file in a dataframe way:[email protected] ~]$ cat People.json{"Name": "Alice", "Pcode": "94304"}{"Name": "Brayden", "age": +, "Pcode": "94304"}{"Name": "Carla", "age": +, "Pcoe": "10036"}{"Name": "Diana", "Age": 46}{"Name": "Etienne", "Pcode": "94104"}[Email protected] ~]$[Email protected] ~]$ HDFs dfs-put People.json[Email protected] ~]$ HDFs dfs-cat People.jso

[Spark] [Python] Example of Spark accessing MySQL, generating dataframe:

dagscheduler.scala:100617/10/03 06:00:34 INFO Scheduler. Dagscheduler:submitting 1 missing tasks from Resultstage 1 (mappartitionsrdd[5) at count at Nativemethodaccessorimpl.java :-2)17/10/03 06:00:34 INFO Scheduler. Taskschedulerimpl:adding Task Set 1.0 with 1 tasks17/10/03 06:00:34 INFO Scheduler. Tasksetmanager:starting task 0.0 in Stage 1.0 (TID 1, localhost, partition 0,node_local, 1999 bytes)17/10/03 06:00:34 INFO executor. Executor:running task 0.0 in Stage 1.0 (TID 1)17/10/03 06:00:34 I

[Spark] [Python] Example of taking a limited record out of a dataframe

[Spark] [Python] Example of a dataframe in which a limited record is taken:SqlContext = Hivecontext (SC)PEOPLEDF = SqlContext.read.json ("People.json")Peopledf.limit (3). Show ()===[Email protected] ~]$ HDFs dfs-cat People.json{"Name": "Alice", "Pcode": "94304"}{"Name": "Brayden", "age": +, "Pcode": "94304"}{"Name": "Carla", "age": +, "Pcoe": "10036"}{"Name": "Diana", "Age": 46}{"Name": "Etienne", "Pcode":

In-depth understanding of pandas in Python (code example)

This article brings the content is about Python pandas in-depth understanding (code example), there is a certain reference value, the need for friends can refer to, I hope to help you. First, screening First, create a 6X4 matrix data. Dates = Pd.date_range (' 20180830 ', periods=6) df = PD. DataFrame (Np.arange) reshape ((6,4)), index=dates, columns=[' A ', ' B

Total Pages: 3 1 2 3 Go to: Go

Contact Us

The content source of this page is from Internet, which doesn't represent Alibaba Cloud's opinion; products and services mentioned on that page don't have any relationship with Alibaba Cloud. If the content of the page makes you feel confusing, please write us an email, we will handle the problem within 5 days after receiving your email.

If you find any instances of plagiarism from the community, please send an email to: info-contact@alibabacloud.com and provide relevant evidence. A staff member will contact you within 5 working days.

A Free Trial That Lets You Build Big!

Start building with 50+ products and up to 12 months usage for Elastic Compute Service

  • Sales Support

    1 on 1 presale consultation

  • After-Sales Support

    24/7 Technical Support 6 Free Tickets per Quarter Faster Response

  • Alibaba Cloud offers highly flexible support services tailored to meet your exact needs.